The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

rnpA  -  protein C5 component of RNase P

Escherichia coli str. K-12 substr. MG1655

Synonyms: ECK3696, JW3681
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of rnpA

 

High impact information on rnpA

 

Chemical compound and disease context of rnpA

 

Biological context of rnpA

  • Primer extension analysis of RNA transcribed in vivo from a plasmid carrying the P1 c4 gene revealed that 5'-mature C4 RNA was the predominant species in rnpA+ bacteria, whereas virtually no mature C4 RNA was found in the temperature-sensitive rnpA49 strain at the restrictive temperature [15].
  • The arrangement and directions of rnpA, rpmH, dnaA, dnaN were conserved, but no other open reading frames were found that were homologous to those that are commonly found around dnaA genes in other bacteria [16].
  • The deduced amino acid sequence of S. bikiniensis RNase P is conserved with that of other known RNase P proteins only to a limited extent [3].
  • Suppression of loss-of-function mutations in Escherichia coli ribonuclease P RNA (M1 RNA) by a specific base-pair disruption [14].
  • The RNA component of bacterial ribonuclease P (RNase P) binds to substrate pre-tRNAs with high affinity and catalyzes site-specific phosphodiester bond hydrolysis to generate the mature tRNA 5' end [17].
 

Anatomical context of rnpA

  • These rabbit anti-C5 antibodies also bound a protein (Mr approximately 40,000) in preparations of RNase P from human (HeLa) cells and depleted the enzymatic activity from preparations of RNase P from both human and E. coli cells [18].
  • Start codons of rnpA and rpmH, apparently governed by the same ribosome binding site, are separated by only 4 nt, which suggests a regulatory linkage between L34 and C5 translation and, accordingly, between ribosome and RNase P biosynthesis [2].
  • Identification of ribonuclease P activity from chick embryos [19].
  • 3. The results indicate that the enzyme system supporting ALA formation in Clostridium thermoaceticum is very similar to the tRNA(Glu)-dependent C5 pathway in plant plastids [20].
 

Associations of rnpA with chemical compounds

  • Transfer ribonucleic acid biosynthesis. Substrate specificity of ribonuclease P [21].
  • The fluorescence emission spectrum of the single tryptophan residue-containing C5 protein exhibits maxima at 318 nm and 332 nm [12].
  • Cleavages in M1 RNA are expected to occur at positions proximal to the site of contact between the modified residue (in C5 protein) and the ribose units in M1 RNA [13].
  • When EPD-Fe was used to modify residue Cys16 in C5 protein, hydroxyl radical-mediated cleavages occurred predominantly in the P3 helix of M1 RNA present in the reconstituted holoenzyme [13].
  • Using the sulfhydryl-specific reagent (1-oxyl-2,2,5, 5-tetramethyl-Delta3-pyrroline-3-methyl)methanethiosulfonate (MTSL), we have introduced a nitroxide spin label individually at six genetically engineered cysteine residues (i.e., positions 16, 21, 44, 54, 66, and 106) and the native cysteine residue (i.e., position 113) in C5 protein [22].
 

Physical interactions of rnpA

 

Other interactions of rnpA

 

Analytical, diagnostic and therapeutic context of rnpA

References

  1. Conservation of genes and their organization in the chromosomal replication origin region of Bacillus subtilis and Escherichia coli. Ogasawara, N., Moriya, S., von Meyenburg, K., Hansen, F.G., Yoshikawa, H. EMBO J. (1985) [Pubmed]
  2. An unusual mechanism of bacterial gene expression revealed for the RNase P protein of Thermus strains. Feltens, R., Gossringer, M., Willkomm, D.K., Urlaub, H., Hartmann, R.K. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  3. Sequences encoding the protein and RNA components of ribonuclease P from Streptomyces bikiniensis var. zorbonensis. Morse, D.P., Schmidt, F.J. Gene (1992) [Pubmed]
  4. Ribonuclease P substrate specificity: cleavage of a bacteriophage phi80-induced RNA. Bothwell, A.L., Stark, B.C., Altman, S. Proc. Natl. Acad. Sci. U.S.A. (1976) [Pubmed]
  5. Substrate binding and catalysis by ribonuclease P from cyanobacteria and Escherichia coli are affected differently by the 3' terminal CCA in tRNA precursors. Pascual, A., Vioque, A. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  6. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N., Altman, S. Cell (1983) [Pubmed]
  7. Mapping the active site of ribonuclease P RNA using a substrate containing a photoaffinity agent. Burgin, A.B., Pace, N.R. EMBO J. (1990) [Pubmed]
  8. Mutations affecting two distinct functions of the RNA component of RNase P. Shiraishi, H., Shimura, Y. EMBO J. (1986) [Pubmed]
  9. Light regulation of chlorophyll biosynthesis at the level of 5-aminolevulinate formation in Arabidopsis. Ilag, L.L., Kumar, A.M., Söll, D. Plant Cell (1994) [Pubmed]
  10. Modulation of ribonuclease P expression in Escherichia coli by polyamines. Panagiotidis, C.A., Drainas, D., Huang, S.C. Int. J. Biochem. (1992) [Pubmed]
  11. Analysis of the functional role of conserved residues in the protein subunit of ribonuclease P from Escherichia coli. Gopalan, V., Baxevanis, A.D., Landsman, D., Altman, S. J. Mol. Biol. (1997) [Pubmed]
  12. Fluorescence properties of a tryptophan residue in an aromatic core of the protein subunit of ribonuclease P from Escherichia coli. Gopalan, V., Golbik, R., Schreiber, G., Fersht, A.R., Altman, S. J. Mol. Biol. (1997) [Pubmed]
  13. Mapping RNA-protein interactions in ribonuclease P from Escherichia coli using disulfide-linked EDTA-Fe. Biswas, R., Ledman, D.W., Fox, R.O., Altman, S., Gopalan, V. J. Mol. Biol. (2000) [Pubmed]
  14. Suppression of loss-of-function mutations in Escherichia coli ribonuclease P RNA (M1 RNA) by a specific base-pair disruption. Morse, D.P., Schmidt, F.J. J. Mol. Biol. (1993) [Pubmed]
  15. Precursor of C4 antisense RNA of bacteriophages P1 and P7 is a substrate for RNase P of Escherichia coli. Hartmann, R.K., Heinrich, J., Schlegl, J., Schuster, H. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  16. Mapping of replication initiation site in Mycoplasma capricolum genome by two-dimensional gel-electrophoretic analysis. Miyata, M., Sano, K., Okada, R., Fukumura, T. Nucleic Acids Res. (1993) [Pubmed]
  17. Identification of adenosine functional groups involved in substrate binding by the ribonuclease P ribozyme. Siew, D., Zahler, N.H., Cassano, A.G., Strobel, S.A., Harris, M.E. Biochemistry (1999) [Pubmed]
  18. An immunological determinant of RNase P protein is conserved between Escherichia coli and humans. Mamula, M.J., Baer, M., Craft, J., Altman, S. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  19. Identification of ribonuclease P activity from chick embryos. Bowman, E.J., Altman, S. Biochim. Biophys. Acta (1980) [Pubmed]
  20. Characterization of the process of 5-aminolevulinic acid formation from glutamate via the C5 pathway in Clostridium thermoaceticum. Oh-hama, T., Stolowich, N.J., Scott, A.I. Int. J. Biochem. (1991) [Pubmed]
  21. Transfer ribonucleic acid biosynthesis. Substrate specificity of ribonuclease P. Schmidt, F.J., Seidman, J.G., Bock, R.M. J. Biol. Chem. (1976) [Pubmed]
  22. Mapping RNA-protein interactions in ribonuclease P from Escherichia coli using electron paramagnetic resonance spectroscopy. Gopalan, V., Kühne, H., Biswas, R., Li, H., Brudvig, G.W., Altman, S. Biochemistry (1999) [Pubmed]
  23. Gel retardation analysis of the interaction between C5 protein and M1 RNA in the formation of the ribonuclease P holoenzyme from Escherichia coli. Talbot, S.J., Altman, S. Biochemistry (1994) [Pubmed]
  24. Processing of RNA in Escherichia coli is limited in the absence of ribonuclease III, ribonuclease E and ribonuclease P. Plautz, G., Apirion, D. J. Mol. Biol. (1981) [Pubmed]
  25. Kinetics and thermodynamics of the RNase P RNA cleavage reaction: analysis of tRNA 3'-end variants. Hardt, W.D., Schlegl, J., Erdmann, V.A., Hartmann, R.K. J. Mol. Biol. (1995) [Pubmed]
  26. Preliminary X-ray characterization of the ribonuclease P (C5 protein) from Escherichia coli: expression, crystallization and cryoconditions. Choe, H.W., Jeong, D.G., Park, J.H., Schlesinger, R., Labahn, J., Hofmann, K.P., Büldt, G. Acta Crystallogr. D Biol. Crystallogr. (2003) [Pubmed]
  27. Interaction of C5 protein with RNA aptamers selected by SELEX. Lee, J.H., Kim, H., Ko, J., Lee, Y. Nucleic Acids Res. (2002) [Pubmed]
  28. Site-directed mutagenesis of M1 RNA, the RNA subunit of Escherichia coli ribonuclease P. The effects of an addition and small deletions on catalytic function. Lawrence, N.P., Altman, S. J. Mol. Biol. (1986) [Pubmed]
 
WikiGenes - Universities