The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Keratomileusis, Laser In Situ

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Keratomileusis, Laser In Situ

 

High impact information on Keratomileusis, Laser In Situ

  • METHODS: In 215 eyes of 117 patients (age, 33.2 +/- 8.3 years) undergoing LASIK for myopia of -1.25 to -13.5 D (-5.28 +/- 2.55 D), ocular wavefront aberrations and contrast sensitivity function were determined before and 1 month after surgery [6].
  • The induced changes in AULCSF by LASIK showed significant correlations with changes in total higher-order (Pearson r=-0.221, P=0.003), coma-like (r=-0.205, P=0.006), and spherical-like (r=-0.171, P=0.022) aberrations [7].
  • INTERVENTION: Six patients with exacerbation of granular corneal deposits after LASIK were examined for TGFBI mutations by polymerase chain reaction sequencing of DNA [8].
  • LASIK and PRK malpractice predictors [9].
  • PARTICIPANTS: Five hundred consecutive eyes of 268 patients undergoing primary LASIK procedures by one surgeon utilizing the Moria LSK One microkeratome and VISX Star S-2 excimer laser [10].
 

Chemical compound and disease context of Keratomileusis, Laser In Situ

 

Biological context of Keratomileusis, Laser In Situ

  • CONCLUSIONS: The LASIK method used in this study showed stability of manifest refraction and adequate uncorrected central visual acuity in a large percentage of patients with myopia up to -15.00 D [2].
  • PURPOSE: To report the ocular manifestations and clinical course of eyes developing interface fluid after laser in situ keratomileusis (LASIK) surgery from a steroid-induced rise in intraocular pressure [16].
  • SETTING: Alicante Institute of Ophthalmology, University of Alicante School of Medicine, Alicante, Spain. METHODS: This prospective study comprised 143 eyes (94 patients) that had LASIK with the Chiron Automated Corneal Shaper and the VISX 20/20 excimer laser using a multizone profile and a sutureless hinged corneal flap technique [17].
  • PURPOSE: To compare the effects of a topical nonsteroidal anti-inflammatory agent, diclofenac, and prednisolone acetate on wound healing, postoperative inflammation, and other clinical parameters in laser in situ keratomileusis (LASIK) patients [18].
  • CONCLUSIONS: The histology from the short pulse mid-infrared optical parametric oscillator laser at 2.94 microm was comparable to the 193-nm excimer with a smooth, damage-free, ablation zone when performing PRK and LASIK [19].
 

Anatomical context of Keratomileusis, Laser In Situ

 

Associations of Keratomileusis, Laser In Situ with chemical compounds

  • INTERVENTION: All patients received a one-pass, multizone excimer laser ablation as part of either a PRK or LASIK procedure using the Summit Apex excimer laser [25].
  • METHODS: Two cases of steroid-induced glaucoma after LASIK were selected [26].
  • Flap rose bengal staining resolved by 6 months after LASIK in most affected patients [27].
  • Evaluation of neuroprotective qualities of brimonidine during LASIK [20].
  • METHODS: From September 28, 1999, to November 4, 1999, 39 eyes of 20 consecutive patients had a single drop of brimonidine tartrate 0.2% instilled into their operative eye(s) before LASIK [28].
 

Gene context of Keratomileusis, Laser In Situ

  • CONCLUSIONS: Significant decreases in IOP were recorded by GAT after LASIK for myopia [29].
  • METHODS: LASIK was performed using a VISX Star Excimer Laser (Santa Clara, CA) [30].
  • METHODS: Four patients received LASIK using a Schwind Supratome (Schwind, Kleinostheim, Germany) and a MEL 70 G-Scan excimer laser (Asclepion, Jena, Germany) and were examined over the course of 1 year using slit-lamp and in vivo confocal microscopy [31].
  • METHODS: Consecutive patients who underwent LASIK in the study range with the VISX Star laser were evaluated for early (approximately 1 month) and late (after 9 months) outcomes [32].
  • Avellino corneal dystrophy after LASIK [8].
 

Analytical, diagnostic and therapeutic context of Keratomileusis, Laser In Situ

References

  1. Volume estimation of excimer laser tissue ablation for correction of spherical myopia and hyperopia. Gatinel, D., Hoang-Xuan, T., Azar, D.T. Invest. Ophthalmol. Vis. Sci. (2002) [Pubmed]
  2. Laser in situ keratomileusis for moderate and high myopia and myopic astigmatism. Knorz, M.C., Wiesinger, B., Liermann, A., Seiberth, V., Liesenhoff, H. Ophthalmology (1998) [Pubmed]
  3. Bacterial keratitis after [correction of following] laser in situ keratomileusis. Levartovsky, S., Rosenwasser, G., Goodman, D. Ophthalmology (2001) [Pubmed]
  4. Risk factors and prognosis for corneal ectasia after LASIK. Randleman, J.B., Russell, B., Ward, M.A., Thompson, K.P., Stulting, R.D. Ophthalmology (2003) [Pubmed]
  5. Laser in situ keratomileusis for high hyperopia in awake, autofixating pediatric and adolescent patients with fully or partially accommodative esotropia. Phillips, C.B., Prager, T.C., McClellan, G., Mintz-Hittner, H.A. Journal of cataract and refractive surgery. (2004) [Pubmed]
  6. Influence of pupil diameter on the relation between ocular higher-order aberration and contrast sensitivity after laser in situ keratomileusis. Oshika, T., Tokunaga, T., Samejima, T., Miyata, K., Kawana, K., Kaji, Y. Invest. Ophthalmol. Vis. Sci. (2006) [Pubmed]
  7. Ocular higher-order aberrations and contrast sensitivity after conventional laser in situ keratomileusis. Yamane, N., Miyata, K., Samejima, T., Hiraoka, T., Kiuchi, T., Okamoto, F., Hirohara, Y., Mihashi, T., Oshika, T. Invest. Ophthalmol. Vis. Sci. (2004) [Pubmed]
  8. Avellino corneal dystrophy after LASIK. Jun, R.M., Tchah, H., Kim, T.I., Stulting, R.D., Jung, S.E., Seo, K.Y., Lee, D.H., Kim, E.K. Ophthalmology (2004) [Pubmed]
  9. LASIK and PRK malpractice predictors. Mutti, D.O. Ophthalmology (2004) [Pubmed]
  10. Corneal epithelial adhesion abnormalities associated with LASIK. Kenyon, K.R., Paz, H., Greiner, J.V., Gipson, I.K. Ophthalmology (2004) [Pubmed]
  11. Incidence and associations of retreatment after LASIK. Hersh, P.S., Fry, K.L., Bishop, D.S. Ophthalmology (2003) [Pubmed]
  12. Topical intrastromal steroid during laser in situ keratomileusis to retard interface keratitis. Peters, N.T., Lingua, R.W., Kim, C.H. Journal of cataract and refractive surgery. (1999) [Pubmed]
  13. Valacyclovir inhibition of recovery of ocular herpes simplex virus type 1 after experimental reactivation by laser in situ keratomileusis. Dhaliwal, D.K., Romanowski, E.G., Yates, K.A., Hu, D., Mah, F.S., Fish, D.N., Gordon, Y.J. Journal of cataract and refractive surgery. (2001) [Pubmed]
  14. Methicillin-resistant Staphylococcus aureus keratitis after laser in situ keratomileusis. Rudd, J.C., Moshirfar, M. Journal of cataract and refractive surgery. (2001) [Pubmed]
  15. Role of topical fluoroquinolones on the pathogenesis of diffuse lamellar keratitis in experimental in vivo studies. Mah, F.S., Romanowski, E.G., Dhaliwal, D.K., Yates, K.A., Gordon, Y.J. Journal of cataract and refractive surgery. (2006) [Pubmed]
  16. Steroid-induced glaucoma after laser in situ keratomileusis associated with interface fluid. Hamilton, D.R., Manche, E.E., Rich, L.F., Maloney, R.K. Ophthalmology (2002) [Pubmed]
  17. Laser in situ keratomileusis to correct high myopia. Pérez-Santonja, J.J., Bellot, J., Claramonte, P., Ismail, M.M., Alió, J.L. Journal of cataract and refractive surgery. (1997) [Pubmed]
  18. Effects of topical diclofenac and prednisolone eyedrops in laser in situ keratomileusis patients. Vantesone, D.L., Luna, J.D., Muiño, J.C., Juárez, C.P. Journal of cataract and refractive surgery. (1999) [Pubmed]
  19. Histological comparison of corneal ablation with Er:YAG laser, Nd:YAG optical parametric oscillator, and excimer laser. Telfair, W.B., Bekker, C., Hoffman, H.J., Yoder, P.R., Nordquist, R.E., Eiferman, R.A., Zenzie, H.H. Journal of refractive surgery (Thorofare, N.J. : 1995) (2000) [Pubmed]
  20. Evaluation of neuroprotective qualities of brimonidine during LASIK. McCarty, T.M., Hardten, D.R., Anderson, N.J., Rosheim, K., Samuelson, T.W. Ophthalmology (2003) [Pubmed]
  21. Evaluation of corneal stromal changes in vivo after laser in situ keratomileusis with confocal microscopy. Pisella, P.J., Auzerie, O., Bokobza, Y., Debbasch, C., Baudouin, C. Ophthalmology (2001) [Pubmed]
  22. Clinical outcome of wavefront-guided laser in situ keratomileusis in eyes with moderate to high myopia with thin corneas. Kremer, I., Bahar, I., Hirsh, A., Levinger, S. Journal of cataract and refractive surgery. (2005) [Pubmed]
  23. Expression of cyclooxygenase-2 in corneal cells after photorefractive keratectomy and laser in situ keratomileusis in rabbits. Miyamoto, T., Saika, S., Okada, Y., Kawashima, Y., Sumioka, T., Fujita, N., Suzuki, Y., Yamanaka, A., Ohnishi, Y. Journal of cataract and refractive surgery. (2004) [Pubmed]
  24. Assessment of anterior chamber flare and cells after laser in situ keratomileusis. El-Harazi, S.M., Chuang, A.Z., Yee, R.W. Journal of cataract and refractive surgery. (2001) [Pubmed]
  25. Photorefractive keratectomy versus laser in situ keratomileusis for moderate to high myopia. A randomized prospective study. Hersh, P.S., Brint, S.F., Maloney, R.K., Durrie, D.S., Gordon, M., Michelson, M.A., Thompson, V.M., Berkeley, R.B., Schein, O.D., Steinert, R.F. Ophthalmology (1998) [Pubmed]
  26. In vivo confocal microscopic findings in patients with steroid-induced glaucoma after LASIK. Cheng, A.C., Law, R.W., Young, A.L., Lam, D.S. Ophthalmology (2004) [Pubmed]
  27. Laser in situ keratomileusis-induced (presumed) neurotrophic epitheliopathy. Wilson, S.E. Ophthalmology (2001) [Pubmed]
  28. The adverse effect of perioperative brimonidine tartrate 0.2% on flap adherence and enhancement rates in laser in situ keratomileusis patients. Walter, K.A., Gilbert, D.D. Ophthalmology (2001) [Pubmed]
  29. Intraocular pressure measurements using dynamic contour tonometry after laser in situ keratomileusis. Kaufmann, C., Bachmann, L.M., Thiel, M.A. Invest. Ophthalmol. Vis. Sci. (2003) [Pubmed]
  30. Effects of laser in situ keratomileusis on tear production, clearance, and the ocular surface. Battat, L., Macri, A., Dursun, D., Pflugfelder, S.C. Ophthalmology (2001) [Pubmed]
  31. Plastic particles at the LASIK interface. Ivarsen, A., Thøgersen, J., Keiding, S.R., Hjortdal, J.Ø., Møller-Pedersen, T. Ophthalmology (2004) [Pubmed]
  32. Laser in situ keratomileusis for high myopia with the VISX star laser. Kawesch, G.M., Kezirian, G.M. Ophthalmology (2000) [Pubmed]
  33. Photorefractive keratectomy versus laser in situ keratomileusis: comparison of optical side effects. Summit PRK-LASIK Study Group. Hersh, P.S., Steinert, R.F., Brint, S.F. Ophthalmology (2000) [Pubmed]
  34. Outcomes of retreatment after laser in situ keratomileusis. Zadok, D., Maskaleris, G., Garcia, V., Shah, S., Montes, M., Chayet, A. Ophthalmology (1999) [Pubmed]
  35. Corneal topography of photorefractive keratectomy versus laser in situ keratomileusis. Summit PRK-LASIK Study Group. Hersh, P.S., Scher, K.S., Irani, R. Ophthalmology (1998) [Pubmed]
  36. A randomized paired eye comparison of two techniques for treating moderately high myopia: LASIK and artisan phakic lens. Malecaze, F.J., Hulin, H., Bierer, P., Fournié, P., Grandjean, H., Thalamas, C., Guell, J.L. Ophthalmology (2002) [Pubmed]
  37. Optical coherence tomography evaluation of the corneal cap and stromal bed features after laser in situ keratomileusis for high myopia and astigmatism. Maldonado, M.J., Ruiz-Oblitas, L., Munuera, J.M., Aliseda, D., García-Layana, A., Moreno-Montañés, J. Ophthalmology (2000) [Pubmed]
 
WikiGenes - Universities