The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Keratoconus


High impact information on Keratoconus

  • Molecular basis for keratoconus: lack of TrkA expression and its transcriptional repression by Sp3 [6].
  • We suggest that an imbalance in Sp transcription-factor isoforms may play a role in controlling the NGF signaling, thus contributing to the pathogenesis of keratoconus [6].
  • Keratoconus is the most common corneal dystrophy that leads to severe visual impairment [6].
  • A VSX1 HD mutation, R166W, that impairs DNA binding and causes keratoconus in humans, hindered repressor function [7].
  • This information may help elucidate the molecular pathways leading to the altered alpha1-proteinase inhibitor expression in keratoconus [8].

Chemical compound and disease context of Keratoconus


Biological context of Keratoconus

  • In the cornea-thinning disease keratoconus, down-regulation of the alpha1-proteinase inhibitor gene and increased Sp1 expression have both been demonstrated [8].
  • Gene expression profile studies of human keratoconus cornea for NEIBank: a novel cornea-expressed gene and the absence of transcripts for aquaporin 5 [13].
  • CONCLUSIONS: Mutational analysis of the VSX1 gene in a series of Italian patients revealed one novel mutation and confirmed an important role played by this gene in a significant proportion of patients affected by keratoconus, when it is inherited as an autosomal dominant trait with variable expressivity and incomplete penetrance [14].
  • RESULTS: The locus for keratoconus with cataract was mapped to a 6.5-Mb region of the long arm of chromosome 15, at 22.33-24.2 between CYP11A and D15S211 [15].
  • Although one cannot conclude inheritance patterns based on this limited evaluation, the findings in this family support previous observations that keratoconus can be familial, and that Fuchs' corneal dystrophy has a female predilection with an autosomal-dominant inheritance pattern [16].

Anatomical context of Keratoconus


Gene context of Keratoconus


Analytical, diagnostic and therapeutic context of Keratoconus

  • The macromolecules in macular corneas and in keratoconus corneas, an abnormality not involving proteoglycans, were biosynthetically labeled with [3H]mannose and [14C]glucosamine in organ culture, and the keratan sulfate proteoglycans were immunoprecipitated with antibodies against the protein core of monkey keratan sulfate proteoglycan [9].
  • Enzymatic assays and western blot analysis were carried out for cathepsins B and G. In addition, an in situ zymography procedure was used to examine the gelatin- and casein-digesting activities in corneas with keratoconus [24].
  • Chromatin immunoprecipitation (ChIP) assays were performed to confirm the interactions between KLF6 and promoters of the genes affected in keratoconus [18].
  • This study supports the hypothesis that the degree of post-penetrating keratoplasty myopia in patients with keratoconus can be decreased by reducing recipient-donor trephine disparity [25].
  • In the clinical evaluation, 11 patients with keratoconus (8 men, 3 women; 25.1 +/- 4.9 years of age) who could not wear hard contact lenses due to constant pain or inadequate lens fitting were given oxygen-permeable piggyback contact lenses and were observed for at least 9 months [26].


  1. Epikeratoplasty. The surgical correction of aphakia, myopia, and keratoconus. Lass, J.H., Stocker, E.G., Fritz, M.E., Collie, D.M. Ophthalmology (1987) [Pubmed]
  2. Penetrating keratoplasty after radial keratotomy. A report of six patients. Parmley, V., Ng, J., Gee, B., Rotkis, W., Mader, T. Ophthalmology (1995) [Pubmed]
  3. Use of silicone lenses in infants and children. Gurland, J.E. Ophthalmology (1979) [Pubmed]
  4. The cornea in connective tissue diseases. Maumenee, I.H. Ophthalmology (1978) [Pubmed]
  5. Differentiation of posterior polymorphous dystrophy from other posterior corneal opacities by specular microscopy. Brooks, A.M., Grant, G., Gillies, W.E. Ophthalmology (1989) [Pubmed]
  6. Molecular basis for keratoconus: lack of TrkA expression and its transcriptional repression by Sp3. Lambiase, A., Merlo, D., Mollinari, C., Bonini, P., Rinaldi, A.M., D' Amato, M., Micera, A., Coassin, M., Rama, P., Bonini, S., Garaci, E. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  7. Transcriptional activity of the paired-like homeodomain proteins CHX10 and VSX1. Dorval, K.M., Bobechko, B.P., Ahmad, K.F., Bremner, R. J. Biol. Chem. (2005) [Pubmed]
  8. Involvement of Sp1 elements in the promoter activity of the alpha1-proteinase inhibitor gene. Li, Y., Zhou, L., Twining, S.S., Sugar, J., Yue, B.Y. J. Biol. Chem. (1998) [Pubmed]
  9. Defective processing of keratan sulfate in macular corneal dystrophy. Nakazawa, K., Hassell, J.R., Hascall, V.C., Lohmander, L.S., Newsome, D.A., Krachmer, J. J. Biol. Chem. (1984) [Pubmed]
  10. Androgen-dependent hereditary mouse keratoconus: linkage to an MHC region. Tachibana, M., Adachi, W., Kinoshita, S., Kobayashi, Y., Honma, Y., Hiai, H., Matsushima, Y. Invest. Ophthalmol. Vis. Sci. (2002) [Pubmed]
  11. Collagen crosslinking in keratoconus. Cannon, D.J., Foster, C.S. Invest. Ophthalmol. Vis. Sci. (1978) [Pubmed]
  12. Detection of specific collagen types in normal and keratoconus corneas. Newsome, D.A., Foidart, J.M., Hassell, J.R., Krachmer, J.H., Rodrigues, M.M., Katz, S.I. Invest. Ophthalmol. Vis. Sci. (1981) [Pubmed]
  13. Gene expression profile studies of human keratoconus cornea for NEIBank: a novel cornea-expressed gene and the absence of transcripts for aquaporin 5. Rabinowitz, Y.S., Dong, L., Wistow, G. Invest. Ophthalmol. Vis. Sci. (2005) [Pubmed]
  14. VSX1 mutational analysis in a series of Italian patients affected by keratoconus: detection of a novel mutation. Bisceglia, L., Ciaschetti, M., De Bonis, P., Campo, P.A., Pizzicoli, C., Scala, C., Grifa, M., Ciavarella, P., Delle Noci, N., Vaira, F., Macaluso, C., Zelante, L. Invest. Ophthalmol. Vis. Sci. (2005) [Pubmed]
  15. Familial keratoconus with cataract: linkage to the long arm of chromosome 15 and exclusion of candidate genes. Hughes, A.E., Dash, D.P., Jackson, A.J., Frazer, D.G., Silvestri, G. Invest. Ophthalmol. Vis. Sci. (2003) [Pubmed]
  16. Keratoconus and Fuchs' corneal endothelial dystrophy in a patient and her family. Lipman, R.M., Rubenstein, J.B., Torczynski, E. Arch. Ophthalmol. (1990) [Pubmed]
  17. Cathepsin G, acid phosphatase, and alpha 1-proteinase inhibitor messenger RNA levels in keratoconus corneas. Whitelock, R.B., Fukuchi, T., Zhou, L., Twining, S.S., Sugar, J., Feder, R.S., Yue, B.Y. Invest. Ophthalmol. Vis. Sci. (1997) [Pubmed]
  18. Kruppel-like factor 6 (KLF6) affects the promoter activity of the alpha1-proteinase inhibitor gene. Chiambaretta, F., Nakamura, H., De Graeve, F., Sakai, H., Marceau, G., Maruyama, Y., Rigal, D., Dastugue, B., Sugar, J., Yue, B.Y., Sapin, V. Invest. Ophthalmol. Vis. Sci. (2006) [Pubmed]
  19. Glycoconjugate abnormalities in cultured keratoconus stromal cells. Yue, B.Y., Panjwani, N., Sugar, J., Baum, J. Arch. Ophthalmol. (1988) [Pubmed]
  20. EMMPRIN and MMP-1 in keratoconus. Seppälä, H.P., Määttä, M., Rautia, M., Mackiewicz, Z., Tuisku, I., Tervo, T., Konttinen, Y.T. Cornea (2006) [Pubmed]
  21. Increased gelatinolytic activity in keratoconus keratocyte cultures. A correlation to an altered matrix metalloproteinase-2/tissue inhibitor of metalloproteinase ratio. Kenney, M.C., Chwa, M., Opbroek, A.J., Brown, D.J. Cornea (1994) [Pubmed]
  22. Localization of TIMP-1, TIMP-2, TIMP-3, gelatinase A and gelatinase B in pathological human corneas. Kenney, M.C., Chwa, M., Alba, A., Saghizadeh, M., Huang, Z.S., Brown, D.J. Curr. Eye Res. (1998) [Pubmed]
  23. Altered expression of CLC, DSG3, EMP3, S100A2, and SLPI in corneal epithelium from keratoconus patients. Nielsen, K., Heegaard, S., Vorum, H., Birkenkamp-Demtröder, K., Ehlers, N., Orntoft, T.F. Cornea (2005) [Pubmed]
  24. Expression of degradative enzymes and protease inhibitors in corneas with keratoconus. Zhou, L., Sawaguchi, S., Twining, S.S., Sugar, J., Feder, R.S., Yue, B.Y. Invest. Ophthalmol. Vis. Sci. (1998) [Pubmed]
  25. Effect of recipient-donor trephine size disparity on refractive error in keratoconus. Wilson, S.E., Bourne, W.M. Ophthalmology (1989) [Pubmed]
  26. A piggyback contact lens for the correction of irregular astigmatism in keratoconus. Tsubota, K., Mashima, Y., Murata, H., Yamada, M. Ophthalmology (1994) [Pubmed]
WikiGenes - Universities