The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Monascus

  • Protective effect of the mold Monascus anka against acetaminophen-induced liver toxicity in rats [1].
  • In this research, a simple and quick selection method for mutant strains with low citrinin production was designed based on the fact that citrinin possesses antibacterial activity for Bacillus subtilis and will form an inhibition zone around the colony of the Monascus strain [2].

High impact information on Monascus

  • Dimerumic acid as an antioxidant of the mold, Monascus anka [3].
  • Polyketide synthase gene responsible for citrinin biosynthesis in Monascus purpureus [4].
  • The effect of temperature, pH, and sodium chloride concentration on the growth of the Ascomycetes fungus Monascus ruber van Tieghem, the main spoilage microorganism during storage of table olives, was studied by using the gradient plate technique [5].
  • A strain of Monascus was grown in submerged, shaken culture using a glucose-salts mediumn [6].
  • RESULTS: At week 8, Monascus purpureus Went rice therapy reduced LDL-C by 27.7%, total cholesterol by 21.5%, triglycerides by 15.8% and apolipoprotein B by 26.0% [7].

Biological context of Monascus

  • The producing strain Monascus ruber M 4681 was found to convert exogenously added monacolin L to J. In this hydroxylation reaction 18O2 was incorporated into monacolin L, giving [18O]-monacolin J [8].
  • To enhance the variety of genetic tools and thus to promote molecular genetic study, aureobasidin A and its resistance gene were adopted as a new marker system together with the incorporation of the Gateway system to facilitate the introduction of long heterologous DNA fragments into Monascus purpureus [9].
  • Growth kinetics and red pigment production of Monascus purpureus CCT 3802 was studied [10].

Anatomical context of Monascus


Associations of Monascus with chemical compounds


Gene context of Monascus

  • A characterization of a non-pigment producing mutant Monascus purpureus M12 compared with its parental strain Monascus purpureus Went CBS 109.07 has been performed aiming to investigate the relation between pigment biosynthesis and other characteristics of these fungi [16].
  • This is also the first report of isolation of a chitinase from a Monascus species [17].
  • Monascus purpureus IB1 produces about 50-fold higher levels of azaphilone pigments than M. purpureus NRRL1596 [18].
  • Purification and characterization of a new type of serine carboxypeptidase from Monascus purpureus [19].
  • Using a synthetic oligonucleotide probe, glyceraldehyde-3-phosphate dehydrogenase gene (gpd1) was cloned from Monascus purpureus KCCM11832 [20].

Analytical, diagnostic and therapeutic context of Monascus


  1. Protective effect of the mold Monascus anka against acetaminophen-induced liver toxicity in rats. Aniya, Y., Yokomakura, T., Yonamine, M., Nagamine, T., Nakanishi, H. Jpn. J. Pharmacol. (1998) [Pubmed]
  2. Modified mutation method for screening low citrinin-producing strains of Monascus purpureus on rice culture. Wang, J.J., Lee, C.L., Pan, T.M. J. Agric. Food Chem. (2004) [Pubmed]
  3. Dimerumic acid as an antioxidant of the mold, Monascus anka. Aniya, Y., Ohtani, I.I., Higa, T., Miyagi, C., Gibo, H., Shimabukuro, M., Nakanishi, H., Taira, J. Free Radic. Biol. Med. (2000) [Pubmed]
  4. Polyketide synthase gene responsible for citrinin biosynthesis in Monascus purpureus. Shimizu, T., Kinoshita, H., Ishihara, S., Sakai, K., Nagai, S., Nihira, T. Appl. Environ. Microbiol. (2005) [Pubmed]
  5. Use of gradient plates to study combined effects of temperature, pH, and NaCl concentration on growth of Monascus ruber van Tieghem, an Ascomycetes fungus isolated from green table olives. Panagou, E.Z., Skandamis, P.N., Nychas, G.J. Appl. Environ. Microbiol. (2005) [Pubmed]
  6. Sexal reproductive cycle of Monascus in submerged shaken culture. Carels, M., Shepherd, D. J. Bacteriol. (1975) [Pubmed]
  7. Efficacy and safety of Monascus purpureus Went rice in subjects with hyperlipidemia. Lin, C.C., Li, T.C., Lai, M.M. Eur. J. Endocrinol. (2005) [Pubmed]
  8. Biosynthesis of monacolins: conversion of monacolin L to monacolin J by a monooxygenase of Monascus ruber. Komagata, D., Shimada, H., Murakawa, S., Endo, A. J. Antibiot. (1989) [Pubmed]
  9. Development of transformation system in Monascus purpureus using an autonomous replication vector with aureobasidin A resistance gene. Shimizu, T., Kinoshita, H., Nihira, T. Biotechnol. Lett. (2006) [Pubmed]
  10. Effect of yeast extract on growth kinetics of Monascus purpureus. Pereira, D.G., Kilikian, B.V. Appl. Biochem. Biotechnol. (2001) [Pubmed]
  11. Induction of gamma-glutamyl transpeptidase and glutathione S-transferase in cultured fetal rat hepatocytes by laccaic acid and monascus pigments. Sako, F., Kobayashi, N., Watabe, H., Yokosawa, N., Taniguchi, N. Chem. Biol. Interact. (1983) [Pubmed]
  12. Nitric oxide-mediated endothelium-dependent relaxation of rat thoracic aorta induced by aqueous extract of red rice fermented with Monascus ruber. Rhyu, M.R., Kim, D.K., Kim, H.Y., Kim, B.K. Journal of ethnopharmacology. (2000) [Pubmed]
  13. Medium-chain fatty acids affect citrinin production in the filamentous fungus Monascus ruber. Hajjaj, H., Klaébé, A., Goma, G., Blanc, P.J., Barbier, E., François, J. Appl. Environ. Microbiol. (2000) [Pubmed]
  14. Food colorants: anthocyanins. Francis, F.J. Critical reviews in food science and nutrition. (1989) [Pubmed]
  15. Monacolin K, a new hypocholesterolemic agent produced by a Monascus species. Endo, A. J. Antibiot. (1979) [Pubmed]
  16. Characterization of a non-pigment producing Monascus purpureus mutant strain. Rasheva, T.V., Nedeva, T.S., Hallet, J.N., Kujumdzieva, A.V. Antonie Van Leeuwenhoek (2003) [Pubmed]
  17. Purification and characterization of an antimicrobial chitinase extracellularly produced by Monascus purpureus CCRC31499 in a shrimp and crab shell powder medium. Wang, S.L., Hsiao, W.J., Chang, W.T. J. Agric. Food Chem. (2002) [Pubmed]
  18. Characterization of an hyperpigmenting mutant of Monascus purpureus IB1: identification of two novel pigment chemical structures. Campoy, S., Rumbero, A., Martín, J.F., Liras, P. Appl. Microbiol. Biotechnol. (2006) [Pubmed]
  19. Purification and characterization of a new type of serine carboxypeptidase from Monascus purpureus. Liu, F., Tachibana, S., Taira, T., Ishihara, M., Yasuda, M. J. Ind. Microbiol. Biotechnol. (2004) [Pubmed]
  20. Cloning and sequence analysis of putative glyceraldehyde-3-phosphate dehydrogenase gene from Monascus purpureus KCCM11832. Kim, J.G., Kim, S.M., Choi, Y.D., Chang, Y.J., Kim, S.U. DNA Seq. (2005) [Pubmed]
  21. Genetic transformation of Monascus purpureus DSM1379. Kim, J.G., Choi, Y.D., Chang, Y.J., Kim, S.U. Biotechnol. Lett. (2003) [Pubmed]
WikiGenes - Universities