The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Ascomycota

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Ascomycota

 

High impact information on Ascomycota

  • The HM1 gene in maize controls both race-specific resistance to the fungus Cochliobolus carbonum race 1 and expression of the NADPH (reduced form of nicotinamide adenine dinucleotide phosphate)-dependent HC toxin reductase (HCTR), which inactivates HC toxin, a cyclic tetrapeptide produced by the fungus to permit infection [3].
  • A mitogen-activated protein kinase pathway modulates the expression of two cellulase genes in Cochliobolus heterostrophus during plant infection [4].
  • A gene, HDC1, related to the Saccharomyces cerevisiae histone deacetylase (HDAC) gene HOS2, was isolated from the filamentous fungus Cochliobolus carbonum, a pathogen of maize that makes the HDAC inhibitor HC-toxin [5].
  • An ortholog of SNF1, ccSNF1, was isolated from the maize pathogen Cochliobolus carbonum, and ccsnf1 mutants of HC toxin-producing (Tox2(+)) and HC toxin-nonproducing (Tox2(-)) strains were created by targeted gene replacement [6].
  • Effective pathogenesis by the fungus Sclerotinia sclerotiorum requires the secretion of oxalic acid [7].
 

Biological context of Ascomycota

 

Anatomical context of Ascomycota

 

Associations of Ascomycota with chemical compounds

 

Gene context of Ascomycota

  • The pad4-1 mutation caused reduced camalexin synthesis in response to PsmES4326 infection, but not in response to Cochliobolus carbonum infection, indicating that PAD4 has a regulatory function [21].
  • In no case are the TRP3 and TRP1 genes fused as has been found in other ascomycetes [22].
  • HC toxin, the host-selective toxin of the maize pathogen Cochliobolus carbonum, inhibited maize histone deacetylase (HD) at 2 microM [16].
  • In particular, sexual and asexual sporulation both require Chk1 function in Cochliobolus heterostrophus, in contrast to Pmk1, but perhaps more similar to yeast, where Fus3 transmits the mating signal [8].
  • Because RPB2 is a single-copy gene of large size with a modest rate of evolutionary change, it provides good phylogenetic resolution of Ascomycota [23].
 

Analytical, diagnostic and therapeutic context of Ascomycota

References

  1. Agrobacterium-mediated transformation of Sclerotinia sclerotiorum. Weld, R.J., Eady, C.C., Ridgway, H.J. J. Microbiol. Methods (2006) [Pubmed]
  2. Novel illudins from Coprinopsis episcopalis (syn. Coprinus episcopalis), and the distribution of illudin-like compounds among filamentous fungi. Gonzalez del Val, A., Platas, G., Arenal, F., Orihuela, J.C., Garcia, M., Hernández, P., Royo, I., De Pedro, N., Silver, L.L., Young, K., Vicente, M.F., Pelaez, F. Mycol. Res. (2003) [Pubmed]
  3. Reductase activity encoded by the HM1 disease resistance gene in maize. Johal, G.S., Briggs, S.P. Science (1992) [Pubmed]
  4. A mitogen-activated protein kinase pathway modulates the expression of two cellulase genes in Cochliobolus heterostrophus during plant infection. Lev, S., Horwitz, B.A. Plant Cell (2003) [Pubmed]
  5. A gene related to yeast HOS2 histone deacetylase affects extracellular depolymerase expression and virulence in a plant pathogenic fungus. Baidyaroy, D., Brosch, G., Ahn, J.H., Graessle, S., Wegener, S., Tonukari, N.J., Caballero, O., Loidl, P., Walton, J.D. Plant Cell (2001) [Pubmed]
  6. The Cochliobolus carbonum SNF1 gene is required for cell wall-degrading enzyme expression and virulence on maize. Tonukari, N.J., Scott-Craig, J.S., Walton, J.D. Plant Cell (2000) [Pubmed]
  7. Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. Cessna, S.G., Sears, V.E., Dickman, M.B., Low, P.S. Plant Cell (2000) [Pubmed]
  8. A mitogen-activated protein kinase of the corn leaf pathogen Cochliobolus heterostrophus is involved in conidiation, appressorium formation, and pathogenicity: diverse roles for mitogen-activated protein kinase homologs in foliar pathogens. Lev, S., Sharon, A., Hadar, R., Ma, H., Horwitz, B.A. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  9. Body plan evolution of ascomycetes, as inferred from an RNA polymerase II phylogeny. Liu, Y.J., Hall, B.D. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  10. Transformation of the dermatophyte Trichophyton mentagrophytes to hygromycin B resistance. Gonzalez, R., Ferrer, S., Buesa, J., Ramon, D. Infect. Immun. (1989) [Pubmed]
  11. Molecular cloning and expression in Saccharomyces cerevisiae of a laccase gene from the ascomycete Melanocarpus albomyces. Kiiskinen, L.L., Saloheimo, M. Appl. Environ. Microbiol. (2004) [Pubmed]
  12. Molecular analysis of the split cox1 gene from the Basidiomycota Agrocybe aegerita: relationship of its introns with homologous Ascomycota introns and divergence levels from common ancestral copies. Gonzalez, P., Barroso, G., Labarère, J. Gene (1998) [Pubmed]
  13. Identification of progesterone binding sites in the plasma membrane of the filamentous fungus Cochliobolus lunatus. Plemenitas, A., Lenasi, H., Hudnik-Plevnik, T. J. Steroid Biochem. Mol. Biol. (1993) [Pubmed]
  14. Pyruvate decarboxylase filaments are associated with the cortical cytoskeleton of asci and spores over the sexual cycle of filamentous ascomycetes. Thompson-Coffe, C., Borioli, G., Zickler, D., Rosa, A.L. Fungal Genet. Biol. (1999) [Pubmed]
  15. Androgen binding proteins in Cochliobolus lunatus. Kastelic-Suhadolc, T., Lenasi, H. FEMS Microbiol. Lett. (1993) [Pubmed]
  16. Inhibition of maize histone deacetylases by HC toxin, the host-selective toxin of Cochliobolus carbonum. Brosch, G., Ransom, R., Lechner, T., Walton, J.D., Loidl, P. Plant Cell (1995) [Pubmed]
  17. Enhanced dihydroflavonol-4-reductase activity and NAD homeostasis leading to cell death tolerance in transgenic rice. Hayashi, M., Takahashi, H., Tamura, K., Huang, J., Yu, L.H., Kawai-Yamada, M., Tezuka, T., Uchimiya, H. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  18. The regulator of nitrate assimilation in ascomycetes is a dimer which binds a nonrepeated, asymmetrical sequence. Strauss, J., Muro-Pastor, M.I., Scazzocchio, C. Mol. Cell. Biol. (1998) [Pubmed]
  19. Fungicide activity through activation of a fungal signalling pathway. Kojima, K., Takano, Y., Yoshimi, A., Tanaka, C., Kikuchi, T., Okuno, T. Mol. Microbiol. (2004) [Pubmed]
  20. Sub-families of alpha/beta barrel enzymes: a new adenine deaminase family. Ribard, C., Rochet, M., Labedan, B., Daignan-Fornier, B., Alzari, P., Scazzocchio, C., Oestreicher, N. J. Mol. Biol. (2003) [Pubmed]
  21. Phytoalexin-deficient mutants of Arabidopsis reveal that PAD4 encodes a regulatory factor and that four PAD genes contribute to downy mildew resistance. Glazebrook, J., Zook, M., Mert, F., Kagan, I., Rogers, E.E., Crute, I.R., Holub, E.B., Hammerschmidt, R., Ausubel, F.M. Genetics (1997) [Pubmed]
  22. Arrangement of genes TRP1 and TRP3 of Saccharomyces cerevisiae strains. Braus, G., Furter, R., Prantl, F., Niederberger, P., Hütter, R. Arch. Microbiol. (1985) [Pubmed]
  23. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Liu, Y.J., Whelen, S., Hall, B.D. Mol. Biol. Evol. (1999) [Pubmed]
  24. Progesterone metabolism by the filamentous fungus Cochliobolus lunatus. Vita, M., Smith, K., Rozman, D., Komel, R. J. Steroid Biochem. Mol. Biol. (1994) [Pubmed]
  25. Oral administration of SSG, a beta-glucan obtained from Sclerotinia sclerotiorum, affects the function of Peyer's patch cells. Hashimoto, K., Suzuki, I., Yadomae, T. Int. J. Immunopharmacol. (1991) [Pubmed]
  26. Characterization of the arom gene in Rhizoctonia solani, and transcription patterns under stable and induced hypovirulence conditions. Lakshman, D.K., Liu, C., Mishra, P.K., Tavantzis, S. Curr. Genet. (2006) [Pubmed]
  27. 3-Hydroxy-3-methylglutaryl-CoA reductase gene of Gibberella fujikuroi: isolation and characterization. Woitek, S., Unkles, S.E., Kinghorn, J.R., Tudzynski, B. Curr. Genet. (1997) [Pubmed]
  28. Crystallization, X-ray diffraction analysis and phasing of 17beta-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus. Cassetta, A., Büdefeld, T., Rizner, T.L., Kristan, K., Stojan, J., Lamba, D. Acta Crystallograph. Sect. F Struct. Biol. Cryst. Commun. (2005) [Pubmed]
 
WikiGenes - Universities