The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Wiskott-Aldrich Syndrome

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

High impact information on Wiskott-Aldrich Syndrome

 

Chemical compound and disease context of Wiskott-Aldrich Syndrome

 

Biological context of Wiskott-Aldrich Syndrome

 

Anatomical context of Wiskott-Aldrich Syndrome

 

Gene context of Wiskott-Aldrich Syndrome

  • We showed previously that the yeast orthologue of the Wiskott-Aldrich Syndrome protein, Bee1/Las17p, and the type I myosins are key regulators of cortical actin polymerization [20].
  • Beads coated with the VCA domain of the Wiskott/Aldrich-syndrome protein (WASP) recruit the actin-nucleating Arp2/3 complex, polymerize actin at their surface and undergo movement when placed in cell-free extracts [21].
  • Now, in this issue of the Biochemical Journal, Takenawa and colleagues have demonstrated that Disabled also acts in a pathway to regulate actin dynamics through the direct activation of N-WASP (neuronal Wiskott-Aldrich syndrome protein) [22].
  • Scar/WAVE-1, a Wiskott-Aldrich syndrome protein, assembles an actin-associated multi-kinase scaffold [23].
  • Wasp, the Drosophila Wiskott-Aldrich syndrome gene homologue, is required for cell fate decisions mediated by Notch signaling [24].
 

Analytical, diagnostic and therapeutic context of Wiskott-Aldrich Syndrome

  • In a cell culture system, the actin-related protein (Arp) 2/3 complex functions as a nucleation core for actin polymerization when activated by the members of the WASP (Wiskott-Aldrich syndrome protein) family [25].
  • Here, we show that vinexin beta increases the amount of and reduces the mobility on SDS-PAGE of Wiskott-Aldrich syndrome protein family verprolin-homologous protein (WAVE) 2 protein, which is a key factor modulating actin polymerization in migrating cells [26].

References

  1. Structure of the N-WASP EVH1 domain-WIP complex: insight into the molecular basis of Wiskott-Aldrich Syndrome. Volkman, B.F., Prehoda, K.E., Scott, J.A., Peterson, F.C., Lim, W.A. Cell (2002) [Pubmed]
  2. X-linked Wiskott-Aldrich syndrome in a girl. Parolini, O., Ressmann, G., Haas, O.A., Pawlowsky, J., Gadner, H., Knapp, W., Holter, W. N. Engl. J. Med. (1998) [Pubmed]
  3. Structure of Arp2/3 complex in its activated state and in actin filament branch junctions. Volkmann, N., Amann, K.J., Stoilova-McPhie, S., Egile, C., Winter, D.C., Hazelwood, L., Heuser, J.E., Li, R., Pollard, T.D., Hanein, D. Science (2001) [Pubmed]
  4. Antigen receptor-induced activation and cytoskeletal rearrangement are impaired in Wiskott-Aldrich syndrome protein-deficient lymphocytes. Zhang, J., Shehabeldin, A., da Cruz, L.A., Butler, J., Somani, A.K., McGavin, M., Kozieradzki, I., dos Santos, A.O., Nagy, A., Grinstein, S., Penninger, J.M., Siminovitch, K.A. J. Exp. Med. (1999) [Pubmed]
  5. WAVE2 deficiency reveals distinct roles in embryogenesis and Rac-mediated actin-based motility. Yan, C., Martinez-Quiles, N., Eden, S., Shibata, T., Takeshima, F., Shinkura, R., Fujiwara, Y., Bronson, R., Snapper, S.B., Kirschner, M.W., Geha, R., Rosen, F.S., Alt, F.W. EMBO J. (2003) [Pubmed]
  6. Drosophila Ack targets its substrate, the sorting nexin DSH3PX1, to a protein complex involved in axonal guidance. Worby, C.A., Simonson-Leff, N., Clemens, J.C., Huddler, D., Muda, M., Dixon, J.E. J. Biol. Chem. (2002) [Pubmed]
  7. ARPC1/Arc40 mediates the interaction of the actin-related protein 2 and 3 complex with Wiskott-Aldrich syndrome protein family activators. Pan, F., Egile, C., Lipkin, T., Li, R. J. Biol. Chem. (2004) [Pubmed]
  8. Inducible recruitment of Cdc42 or WASP to a cell-surface receptor triggers actin polymerization and filopodium formation. Castellano, F., Montcourrier, P., Guillemot, J.C., Gouin, E., Machesky, L., Cossart, P., Chavrier, P. Curr. Biol. (1999) [Pubmed]
  9. Isolation of a NCK-associated kinase, PRK2, an SH3-binding protein and potential effector of Rho protein signaling. Quilliam, L.A., Lambert, Q.T., Mickelson-Young, L.A., Westwick, J.K., Sparks, A.B., Kay, B.K., Jenkins, N.A., Gilbert, D.J., Copeland, N.G., Der, C.J. J. Biol. Chem. (1996) [Pubmed]
  10. Chemical inhibition of N-WASP by stabilization of a native autoinhibited conformation. Peterson, J.R., Bickford, L.C., Morgan, D., Kim, A.S., Ouerfelli, O., Kirschner, M.W., Rosen, M.K. Nat. Struct. Mol. Biol. (2004) [Pubmed]
  11. In vitro reconstitution of cortical actin assembly sites in budding yeast. Lechler, T., Li, R. J. Cell Biol. (1997) [Pubmed]
  12. Concentration of an integral membrane protein, CD43 (leukosialin, sialophorin), in the cleavage furrow through the interaction of its cytoplasmic domain with actin-based cytoskeletons. Yonemura, S., Nagafuchi, A., Sato, N., Tsukita, S. J. Cell Biol. (1993) [Pubmed]
  13. The interaction between Cdc42 and WASP is required for SDF-1-induced T-lymphocyte chemotaxis. Haddad, E., Zugaza, J.L., Louache, F., Debili, N., Crouin, C., Schwarz, K., Fischer, A., Vainchenker, W., Bertoglio, J. Blood (2001) [Pubmed]
  14. Rapid WAVE dynamics in dendritic spines of cultured hippocampal neurons is mediated by actin polymerization. Pilpel, Y., Segal, M. J. Neurochem. (2005) [Pubmed]
  15. Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4, 5-bisphosphate. Rohatgi, R., Ho, H.Y., Kirschner, M.W. J. Cell Biol. (2000) [Pubmed]
  16. CR16 forms a complex with N-WASP in brain and is a novel member of a conserved proline-rich actin-binding protein family. Ho, H.Y., Rohatgi, R., Ma, L., Kirschner, M.W. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  17. WASp deficiency in mice results in failure to form osteoclast sealing zones and defects in bone resorption. Calle, Y., Jones, G.E., Jagger, C., Fuller, K., Blundell, M.P., Chow, J., Chambers, T., Thrasher, A.J. Blood (2004) [Pubmed]
  18. Cdc42, Rac1, and the Wiskott-Aldrich syndrome protein are involved in the cytoskeletal regulation of B lymphocytes. Westerberg, L., Greicius, G., Snapper, S.B., Aspenström, P., Severinson, E. Blood (2001) [Pubmed]
  19. Itk functions to control actin polymerization at the immune synapse through localized activation of Cdc42 and WASP. Labno, C.M., Lewis, C.M., You, D., Leung, D.W., Takesono, A., Kamberos, N., Seth, A., Finkelstein, L.D., Rosen, M.K., Schwartzberg, P.L., Burkhardt, J.K. Curr. Biol. (2003) [Pubmed]
  20. A two-tiered mechanism by which Cdc42 controls the localization and activation of an Arp2/3-activating motor complex in yeast. Lechler, T., Jonsdottir, G.A., Klee, S.K., Pellman, D., Li, R. J. Cell Biol. (2001) [Pubmed]
  21. Actin-filament cross-linking protein T-plastin increases Arp2/3-mediated actin-based movement. Giganti, A., Plastino, J., Janji, B., Van Troys, M., Lentz, D., Ampe, C., Sykes, C., Friederich, E. J. Cell. Sci. (2005) [Pubmed]
  22. Filopodia formation and Disabled degradation downstream of Reelin. Winder, S.J. Biochem. J. (2004) [Pubmed]
  23. Scar/WAVE-1, a Wiskott-Aldrich syndrome protein, assembles an actin-associated multi-kinase scaffold. Westphal, R.S., Soderling, S.H., Alto, N.M., Langeberg, L.K., Scott, J.D. EMBO J. (2000) [Pubmed]
  24. Wasp, the Drosophila Wiskott-Aldrich syndrome gene homologue, is required for cell fate decisions mediated by Notch signaling. Ben-Yaacov, S., Le Borgne , R., Abramson, I., Schweisguth, F., Schejter, E.D. J. Cell Biol. (2001) [Pubmed]
  25. Essential role of the C. elegans Arp2/3 complex in cell migration during ventral enclosure. Sawa, M., Suetsugu, S., Sugimoto, A., Miki, H., Yamamoto, M., Takenawa, T. J. Cell. Sci. (2003) [Pubmed]
  26. Protein kinase A-dependent increase in WAVE2 expression induced by the focal adhesion protein vinexin. Mitsushima, M., Sezaki, T., Akahane, R., Ueda, K., Suetsugu, S., Takenawa, T., Kioka, N. Genes Cells (2006) [Pubmed]
 
WikiGenes - Universities