The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Eye Color

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Eye Color

  • The mouse mutant mocha, a model for the Hermansky-Pudlak storage pool deficiency syndrome, is characterized by defective platelets, coat and eye color dilution, lysosomal abnormalities, inner ear degeneration, and neurological deficits [1].
  • White spots on the other hand were equally large in size, irrespective of inducing agent and about twice the size of the chemically-induced red spots, implying a faster and more direct action for fixation of deletions than for the production of MMS induced shifts in eye color from zeste to red [2].
  • For subjects treated with cyclopentolate, this decreased mydriasis was related to age (P less than .05) and to eye color (P less than .025): the younger and blue-eyed subjects dilated less on the second day than the older and brown-eyed subjects [3].
 

High impact information on Eye Color

  • In contrast to the relative insensitivity of eye-color pigmentation and dosage compensation to genomic position, the transduced white DNA segments differed widely in their interactions with the zeste mutation, ranging from greater than normal repression by zeste to insensitivity to the presence of zeste [4].
  • Transcriptional gene silencing (TGS) is Polycomb dependent and occurs when Adh is driven by the white eye color gene promoter [5].
  • Deep orange and carnation are two of the classic eye color genes in Drosophila [6].
  • We report here that a defect in a gene encoding a putative coat adaptor protein leads to the eye color defect of garnet mutants [7].
  • We describe a simple eye-color screen that facilitates isolation and analysis of mutations in the mariner transposase in Drosophila melanogaster [8].
 

Biological context of Eye Color

  • This is probably due to the association of these OCA2 SNPs with brown/green not blue eye color [9].
  • P[hswa] carries white-apricot (wa) sequences, including a complete copia element, under the control of an hsp70 promoter, and resembles the original wa allele in eye color phenotype [10].
  • The claret (ca) locus of Drosophila melanogaster comprises two separately mutable domains, one responsible for eye color and one responsible for proper disjunction of chromosomes in meiosis and early cleavage divisions [11].
  • In a search for modifiers of gene expression with the white eye color gene as a target, a third chromosomal P-element insertion mutant l(3)01544 has been identified that exhibits a strong pigment increase in a white-apricot background [12].
  • There exist suppressor and enhancer mutations that modify the z1 eye color, and this paper summarizes our studies of those belonging to the Suppressor 2 of zeste complex [Su(z)2-C] [13].
 

Anatomical context of Eye Color

 

Associations of Eye Color with chemical compounds

 

Gene context of Eye Color

 

Analytical, diagnostic and therapeutic context of Eye Color

References

  1. Mutation in AP-3 delta in the mocha mouse links endosomal transport to storage deficiency in platelets, melanosomes, and synaptic vesicles. Kantheti, P., Qiao, X., Diaz, M.E., Peden, A.A., Meyer, G.E., Carskadon, S.L., Kapfhamer, D., Sufalko, D., Robinson, M.S., Noebels, J.L., Burmeister, M. Neuron (1998) [Pubmed]
  2. Comparative studies of the induction of somatic eye-color mutations in an unstable strain of Drosophila melanogaster by MMS and X-rays at different developmental stages. Rasmuson, A. Mutat. Res. (1985) [Pubmed]
  3. Reduced mydriasis from repeated doses of tropicamide and cyclopentolate. McCormack, D.L. Ophthalmic surgery. (1990) [Pubmed]
  4. Transformation of white locus DNA in drosophila: dosage compensation, zeste interaction, and position effects. Hazelrigg, T., Levis, R., Rubin, G.M. Cell (1984) [Pubmed]
  5. RNAi related mechanisms affect both transcriptional and posttranscriptional transgene silencing in Drosophila. Pal-Bhadra, M., Bhadra, U., Birchler, J.A. Mol. Cell (2002) [Pubmed]
  6. A role for the deep orange and carnation eye color genes in lysosomal delivery in Drosophila. Sevrioukov, E.A., He, J.P., Moghrabi, N., Sunio, A., Krämer, H. Mol. Cell (1999) [Pubmed]
  7. Altered expression of a novel adaptin leads to defective pigment granule biogenesis in the Drosophila eye color mutant garnet. Ooi, C.E., Moreira, J.E., Dell'Angelica, E.C., Poy, G., Wassarman, D.A., Bonifacino, J.S. EMBO J. (1997) [Pubmed]
  8. Mutations in the mariner transposase: the D,D(35)E consensus sequence is nonfunctional. Lohe, A.R., De Aguiar, D., Hartl, D.L. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  9. Interactive effects of MC1R and OCA2 on melanoma risk phenotypes. Duffy, D.L., Box, N.F., Chen, W., Palmer, J.S., Montgomery, G.W., James, M.R., Hayward, N.K., Martin, N.G., Sturm, R.A. Hum. Mol. Genet. (2004) [Pubmed]
  10. P element-mediated in vivo deletion analysis of white-apricot: deletions between direct repeats are strongly favored. Kurkulos, M., Weinberg, J.M., Roy, D., Mount, S.M. Genetics (1994) [Pubmed]
  11. Genetic analysis of the claret locus of Drosophila melanogaster. Sequeira, W., Nelson, C.R., Szauter, P. Genetics (1989) [Pubmed]
  12. Mutation in P0, a dual function ribosomal protein/apurinic/apyrimidinic endonuclease, modifies gene expression and position effect variegation in Drosophila. Frolov, M.V., Birchler, J.A. Genetics (1998) [Pubmed]
  13. A genetic analysis of the Suppressor 2 of zeste complex of Drosophila melanogaster. Wu, C.T., Howe, M. Genetics (1995) [Pubmed]
  14. Melanocyte-specific expression of the human tyrosinase promoter: activation by the microphthalmia gene product and role of the initiator. Bentley, N.J., Eisen, T., Goding, C.R. Mol. Cell. Biol. (1994) [Pubmed]
  15. Ultrastructural, histochemical, and biochemical studies of the melanin metabolism in eye and skin of pallid mice. Ito, M., Hashimoto, K., Organisciak, D.T. J. Invest. Dermatol. (1982) [Pubmed]
  16. Purine transport by malpighian tubules of pteridine-deficient eye color mutants of Drosophila melanogaster. Sullivan, D.T., Bell, L.A., Paton, D.R., Sullivan, M.C. Biochem. Genet. (1979) [Pubmed]
  17. Tryptophan metabolism in tsetse flies and the consequences of its derangement. Gooding, R.H., Rolseth, B.M. Mem. Inst. Oswaldo Cruz (1987) [Pubmed]
  18. Xanthurenic acid 8-O-beta-D-glucoside, a novel tryptophan metabolite in eye-color mutants of Drosophila melanogaster. Ferré, J., Real, M.D., Ménsua, J.L., Jacobson, K.B. J. Biol. Chem. (1985) [Pubmed]
  19. The incidence and time-course of latanoprost-induced iridial pigmentation as a function of eye color. Wistrand, P.J., Stjernschantz, J., Olsson, K. Survey of ophthalmology. (1997) [Pubmed]
  20. Xenobiotica-metabolizing enzymes in Drosophila melanogaster: activities of epoxide hydratase and glutathione S-transferase compared with similar activities in rat liver. Baars, A.J., Jansen, M., Breimer, D.D. Mutat. Res. (1979) [Pubmed]
  21. Effect of eye color on heart rate response to intramuscular administration of atropine. Friedl, K.E., Hannan, C.J., Mader, T.H., Patience, T.H., Schadler, P.W. J. Auton. Nerv. Syst. (1988) [Pubmed]
  22. Mutagenic effects of some water-soluble metal compounds in a somatic eye-color test system in Drosophila melanogaster. Rasmuson, A. Mutat. Res. (1985) [Pubmed]
  23. Interaction of the murine dilute suppressor gene (dsu) with fourteen coat color mutations. Moore, K.J., Swing, D.A., Copeland, N.G., Jenkins, N.A. Genetics (1990) [Pubmed]
  24. Cloning and characterization of the Tribolium castaneum eye-color genes encoding tryptophan oxygenase and kynurenine 3-monooxygenase. Lorenzen, M.D., Brown, S.J., Denell, R.E., Beeman, R.W. Genetics (2002) [Pubmed]
  25. Regena (Rga), a Drosophila homolog of the global negative transcriptional regulator CDC36 (NOT2) from yeast, modifies gene expression and suppresses position effect variegation. Frolov, M.V., Benevolenskaya, E.V., Birchler, J.A. Genetics (1998) [Pubmed]
  26. Single nucleotide polymorphisms in the MATP gene are associated with normal human pigmentation variation. Graf, J., Hodgson, R., van Daal, A. Hum. Mutat. (2005) [Pubmed]
  27. Structure and expression of wild-type and suppressible alleles of the Drosophila purple gene. Kim, N., Kim, J., Park, D., Rosen, C., Dorsett, D., Yim, J. Genetics (1996) [Pubmed]
  28. The fine structure of an iridectomy specimen from a patient with latanoprost-induced eye color change. Grierson, I., Lee, W.R., Albert, D.M. Arch. Ophthalmol. (1999) [Pubmed]
 
WikiGenes - Universities