The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Efonidipine     2-(benzyl-phenyl-amino)ethyl 5-(5,5...

Synonyms: AGN-PC-00FP0M, AC-389, CHEMBL2074922, AC1L3OBH, ACT06293, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Efonidipine

 

High impact information on Efonidipine

  • In contrast, efonidipine caused a similar magnitude of vasodilatation (16 +/- 4%) compared with 18 +/- 2%; n = 6), and mibefradil caused greater dilatation of efferent arterioles (20 +/- 4%, n = 7) than that of afferent arterioles (13 +/- 4%) [5].
  • To address these issues, the effects of efonidipine and its R(-)- and S(+)-isomers on these Ca(2+) channel subtypes were examined electrophysiologically in the expression systems using Xenopus oocytes and baby hamster kidney cells (BHK tk-ts13) [6].
  • These antagonists exerted contrasting actions on the filtration fraction (FF), with an increase being elicited by nifedipine, whereas efonidipine had no effect [7].
  • In the sino-atrial node, 1 microM efonidipine produced increase in cycle length accompanied by prolongation of the phase 4 depolarization which was not prominent with 0.1 microM nifedipine [8].
  • All Ca2+ channel antagonists except efonidipine shifted the maximum diastolic potential to the positive direction, decreased the action potential amplitude and prolonged the action potential duration [9].
 

Chemical compound and disease context of Efonidipine

 

Biological context of Efonidipine

 

Anatomical context of Efonidipine

 

Associations of Efonidipine with other chemical compounds

 

Gene context of Efonidipine

  • Neither of these inhibitors suppressed the efonidipine-induced ABCA1 protein expression [21].
  • Pretreatment with efonidipine attenuated the decrease in CBF induced by ET-1 significantly and dose-dependently [22].
  • 3. Micropuncture experiments revealed that the maximal reduction of proximal stop-flow pressure (SFP), an index of glomerular capillary pressure (Pgc), induced by loop of Henle perfusion was significantly less with efonidipine treatment (6.7 +/- 1.0% of SFP with no loop flow) than in control (23.8 +/- 3.1%) [13].
  • These findings suggest that efonidipine acts via T-type Ca2+ channel blockade to significantly reduce aldosterone secretion, and that this effect is mediated, at least in part, by suppression of 11-beta-hydroxylase and aldosterone synthase expression [23].
  • Efonidipine decreased plasma aldosterone concentration despite the increase in plasma renin activity and Ang II, suggesting that T-type Ca2+ channels may also play an essential role in the secretion of aldosterone in healthy human volunteers [19].
 

Analytical, diagnostic and therapeutic context of Efonidipine

  • Efonidipine (0.33 mg/kg per min, n = 9), however, had no effect on filtration fraction, with 14 +/- 6% increments in RPF (P < 0.05) and 14 +/- 7% increments in GFR (P = 0.08) [5].
  • 4. These results indicate that efonidipine attenuates the TGF response in SHR by dilating the afferent arteriole, thus maintaining the level of RPF and GFR despite reduced renal perfusion pressure [13].
  • The levels of urinary albumin in the diabetic SHRs after treatment with efonidipine were significantly less than those in the diabetic SHRs at 8 and 12 weeks (P < 0.01) [24].

References

  1. Vascular effects of calcium channel antagonists: new evidence. Richard, S. Drugs (2005) [Pubmed]
  2. Effect of efonidipine and ACE inhibitors on proteinuria in human hypertension with renal impairment. Hayashi, K., Kumagai, H., Saruta, T. Am. J. Hypertens. (2003) [Pubmed]
  3. Calcium antagonist inhibits glomerular cell apoptosis and injuries of L-NAME exacerbated nephrosclerosis in SHR. Watanabe, S., Ono, H., Ishimitsu, T., Matsuoka, H., Ono, Y., Fujimori, T. Hypertens. Res. (2000) [Pubmed]
  4. Effects of efonidipine on platelet and monocyte activation markers in hypertensive patients with and without type 2 diabetes mellitus. Nomura, S., Kanazawa, S., Fukuhara, S. Journal of human hypertension. (2002) [Pubmed]
  5. Divergent renal vasodilator action of L- and T-type calcium antagonists in vivo. Honda, M., Hayashi, K., Matsuda, H., Kubota, E., Tokuyama, H., Okubo, K., Takamatsu, I., Ozawa, Y., Saruta, T. J. Hypertens. (2001) [Pubmed]
  6. Identification of R(-)-isomer of efonidipine as a selective blocker of T-type Ca2+ channels. Furukawa, T., Miura, R., Honda, M., Kamiya, N., Mori, Y., Takeshita, S., Isshiki, T., Nukada, T. Br. J. Pharmacol. (2004) [Pubmed]
  7. Divergent natriuretic action of calcium channel antagonists in mongrel dogs: renal haemodynamics as a determinant of natriuresis. Honda, M., Hayashi, K., Matsuda, H., Kubota, E., Tokuyama, H., Okubo, K., Ozawa, Y., Saruta, T. Clin. Sci. (2001) [Pubmed]
  8. Inhibition of myocardial L- and T-type Ca2+ currents by efonidipine: possible mechanism for its chronotropic effect. Masumiya, H., Shijuku, T., Tanaka, H., Shigenobu, K. Eur. J. Pharmacol. (1998) [Pubmed]
  9. Effects of Ca2+ channel antagonists on sinus node: prolongation of late phase 4 depolarization by efonidipine. Masumiya, H., Tanaka, H., Shigenobu, K. Eur. J. Pharmacol. (1997) [Pubmed]
  10. Effects of benidipine in a rat model of experimental angina. Ikeda, J., Matsubara, M., Yao, K. Yakugaku Zasshi (2006) [Pubmed]
  11. Role of actions of calcium antagonists on efferent arterioles--with special references to glomerular hypertension. Hayashi, K., Ozawa, Y., Fujiwara, K., Wakino, S., Kumagai, H., Saruta, T. American journal of nephrology. (2003) [Pubmed]
  12. Disparate effects of calcium antagonists on renal microcirculation. Hayashi, K., Nagahama, T., Oka, K., Epstein, M., Saruta, T. Hypertens. Res. (1996) [Pubmed]
  13. Renal effects of efonidipine hydrochloride, a new calcium antagonist, in spontaneously hypertensive rats with glomerular injury. Kawabata, M., Ogawa, T., Han, W.H., Takabatake, T. Clin. Exp. Pharmacol. Physiol. (1999) [Pubmed]
  14. The voltage-dependent non-selective cation channel sensitive to the L-type calcium channel blocker efonidipine regulates Ca2+ influx in brain vascular smooth muscle cells. Matsuoka, T., Nishizaki, T., Nomura, T. Biochem. Biophys. Res. Commun. (1997) [Pubmed]
  15. Effects of efonidipine hydrochloride on cholesterol esterification mediated by beta-very low density lipoprotein in J774 macrophages. Kitahara, M., Toyoda, K., Yamashita, T., Sakashita, M., Tanaka, S., Saito, Y. Jpn. J. Pharmacol. (1995) [Pubmed]
  16. Inhibitory effects of calcium antagonists on mitochondrial swelling induced by lipid peroxidation or arachidonic acid in the rat brain in vitro. Takei, M., Hiramatsu, M., Mori, A. Neurochem. Res. (1994) [Pubmed]
  17. Frequency-dependent blockade of T-type Ca2+ current by efonidipine in cardiomyocytes. Masumiya, H., Kase, J., Tanaka, Y., Tanaka, H., Shigenobu, K. Life Sci. (2000) [Pubmed]
  18. Possible requirement of phosphonate moiety for efonidipine effects on the sino-atrial node action potential. Masumiya, H., Matsuda, T., Tanaka, Y., Tanaka, H., Shigenobu, K. Life Sci. (2000) [Pubmed]
  19. Blocking T-type Ca2+ channels with efonidipine decreased plasma aldosterone concentration in healthy volunteers. Okayama, S., Imagawa, K., Naya, N., Iwama, H., Somekawa, S., Kawata, H., Horii, M., Nakajima, T., Uemura, S., Saito, Y. Hypertens. Res. (2006) [Pubmed]
  20. Effects of efonidipine hydrochloride on renal arteriolar diameters in spontaneously hypertensive rats. Nakamura, M., Notoya, M., Kohda, Y., Yamashita, J., Takashita, Y., Gemba, M. Hypertens. Res. (2002) [Pubmed]
  21. Divergent action of calcium channel blockers on ATP-binding cassette protein expression. Hasegawa, K., Wakino, S., Kanda, T., Yoshioka, K., Tatematsu, S., Homma, K., Takamatsu, I., Sugano, N., Hayashi, K. J. Cardiovasc. Pharmacol. (2005) [Pubmed]
  22. Efonidipine, a long-acting dihydropyridine derivative, attenuates coronary vasoconstriction induced by endothelin-1 in dogs. Yokoyama, T., Ichihara, K., Abiko, Y. Jpn. J. Pharmacol. (1996) [Pubmed]
  23. Inhibitory effect of efonidipine on aldosterone synthesis and secretion in human adrenocarcinoma (H295R) cells. Imagawa, K., Okayama, S., Takaoka, M., Kawata, H., Naya, N., Nakajima, T., Horii, M., Uemura, S., Saito, Y. J. Cardiovasc. Pharmacol. (2006) [Pubmed]
  24. Effects of the antihypertensive drug efonidipine hydrochloride on albuminuria and renal histopathology in young spontaneously hypertensive rats with diabetes. Takeda, M., Shou, I., Tomino, Y. Gen. Pharmacol. (1998) [Pubmed]
 
WikiGenes - Universities