The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

CYP11B2  -  cytochrome P450, family 11, subfamily B,...

Homo sapiens

Synonyms: ALDOS, Aldosterone synthase, Aldosterone-synthesizing enzyme, CPN2, CYP11B, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of CYP11B2


High impact information on CYP11B2


Chemical compound and disease context of CYP11B2


Biological context of CYP11B2

  • Cells transfected with hybrid cDNAs containing up to the first three exons of CYP11B1 synthesized aldosterone at levels near that of cells carrying normal CYP11B2, but cells transfected with hybrids containing the first five or more exons of CYP11B1 could not synthesize detectable amounts of aldosterone [2].
  • However, the homology between the nucleotide sequences of one of the three and CYP11B2 was rather low, about 90 and 50% in the coding and 0.5-kilobase 5'-flanking regions, respectively [19].
  • In transient transfection experiments using mouse adrenocortical Y1 cells and chloramphenicol acetyltransferase gene constructs, the 0.5-kilobase 5'-flanking region of CYP11B1 had a 4- and 10-fold higher promoter activity than the corresponding regions of CYP11B2 and -B3, respectively [19].
  • CYP11B2-CYP11B1 haplotypes associated with decreased 11 beta-hydroxylase activity [20].
  • The aim of this work was to evaluate whether other genetic alterations exist in CYP11B genes (gene conversion in the coding region of CYP11B1 or in the promoter of CYP11B2) that could explain a positive dexamethasone suppression test and to determine another genetic cause of glucocorticoid-remediable aldosteronism [14].

Anatomical context of CYP11B2


Associations of CYP11B2 with chemical compounds

  • CYP11B1 (11beta-hydroxylase) and CYP11B2 (aldosterone synthase) are 93% identical mitochondrial enzymes that both catalyze 11beta-hydroxylation of steroid hormones [24].
  • CYP11B2 has the additional 18-hydroxylase and 18-oxidase activities required for conversion of 11-deoxycorticosterone to aldosterone [24].
  • These two additional C18 conversions can be catalyzed by CYP11B1 if serine-288 and valine-320 are replaced by the corresponding CYP11B2 residues, glycine and alanine [24].
  • Although a variant of cAMP-responsive element, which was present in rat CYP11B2 and all known CYP11B genes of other animals, was modified in rat CYP11B1 and -B3 genes, dibutyryl cAMP stimulated all the promoter activities of the 5'-flanking regions of the rat genes by 3-fold [19].
  • NGFIB and NURR1 transcript and protein levels were strongly induced by angiotensin (Ang) II, the major regulator of hCYP11B2 expression in vivo [25].

Physical interactions of CYP11B2


Regulatory relationships of CYP11B2


Other interactions of CYP11B2

  • The extra gene is a hybrid with 5' regulatory and coding regions corresponding to CYP11B1 and 3' coding regions from CYP11B2 [2].
  • The competition of human CYP11A1 with human CYP11B1 and CYP11B2 could be diminished with excess expression of bovine adrenodoxin [32].
  • Linkage studies in one informative family did not show segregation of FH-II with the CYP11B2, AT1 or MEN1 genes, but a genome-wide search has revealed linkage with a locus in chromosome 7 [33].
  • Both DKK3 and WNT4 increased the level of CYP11B2 [34].
  • A biallelic gene polymorphism of CYP11B2 predicts increased aldosterone to renin ratio in selected hypertensive patients [3].

Analytical, diagnostic and therapeutic context of CYP11B2


  1. Disorders of steroid 11 beta-hydroxylase isozymes. White, P.C., Curnow, K.M., Pascoe, L. Endocr. Rev. (1994) [Pubmed]
  2. Glucocorticoid-suppressible hyperaldosteronism results from hybrid genes created by unequal crossovers between CYP11B1 and CYP11B2. Pascoe, L., Curnow, K.M., Slutsker, L., Connell, J.M., Speiser, P.W., New, M.I., White, P.C. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  3. A biallelic gene polymorphism of CYP11B2 predicts increased aldosterone to renin ratio in selected hypertensive patients. Nicod, J., Bruhin, D., Auer, L., Vogt, B., Frey, F.J., Ferrari, P. J. Clin. Endocrinol. Metab. (2003) [Pubmed]
  4. Deletion hybrid genes, due to unequal crossing over between CYP11B1 (11beta-hydroxylase) and CYP11B2(aldosterone synthase) cause steroid 11beta-hydroxylase deficiency and congenital adrenal hyperplasia. Portrat, S., Mulatero, P., Curnow, K.M., Chaussain, J.L., Morel, Y., Pascoe, L. J. Clin. Endocrinol. Metab. (2001) [Pubmed]
  5. Hereditary hypertension caused by chimaeric gene duplications and ectopic expression of aldosterone synthase. Lifton, R.P., Dluhy, R.G., Powers, M., Rich, G.M., Gutkin, M., Fallo, F., Gill, J.R., Feld, L., Ganguly, A., Laidlaw, J.C. Nat. Genet. (1992) [Pubmed]
  6. A chimaeric 11 beta-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Lifton, R.P., Dluhy, R.G., Powers, M., Rich, G.M., Cook, S., Ulick, S., Lalouel, J.M. Nature (1992) [Pubmed]
  7. Effect of serotonin4 (5-HT4) receptor agonists on aldosterone secretion in idiopathic hyperaldosteronism. Lefebvre, H., Cartier, D., Duparc, C., Contesse, V., Lihrmann, I., Delarue, C., Vaudry, H., Fischmeister, R., Kuhn, J.M. Endocr. Res. (2000) [Pubmed]
  8. Expression profile of serotonin4 (5-HT4) receptors in adrenocortical aldosterone-producing adenomas. Cartier, D., Jégou, S., Parmentier, F., Lihrmann, I., Louiset, E., Kuhn, J.M., Bastard, C., Plouin, P.F., Godin, M., Vaudry, H., Lefebvre, H. Eur. J. Endocrinol. (2005) [Pubmed]
  9. PCP4: a regulator of aldosterone synthesis in human adrenocortical tissues. Felizola, S.J., Nakamura, Y., Ono, Y., Kitamura, K., Kikuchi, K., Onodera, Y., Ise, K., Takase, K., Sugawara, A., Hattangady, N., Rainey, W.E., Satoh, F., Sasano, H. J. Mol. Endocrinol. (2014) [Pubmed]
  10. Zona glomerulosa cells of the mouse adrenal cortex are intrinsic electrical oscillators. Hu, C., Rusin, C.G., Tan, Z., Guagliardo, N.A., Barrett, P.Q. J. Clin. Invest. (2012) [Pubmed]
  11. Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension. Azizan, E.A., Poulsen, H., Tuluc, P., Zhou, J., Clausen, M.V., Lieb, A., Maniero, C., Garg, S., Bochukova, E.G., Zhao, W., Shaikh, L.H., Brighton, C.A., Teo, A.E., Davenport, A.P., Dekkers, T., Tops, B., Küsters, B., Ceral, J., Yeo, G.S., Neogi, S.G., McFarlane, I., Rosenfeld, N., Marass, F., Hadfield, J., Margas, W., Chaggar, K., Solar, M., Deinum, J., Dolphin, A.C., Farooqi, I.S., Striessnig, J., Nissen, P., Brown, M.J. Nat. Genet. (2013) [Pubmed]
  12. Voltage-gated calcium channels in the human adrenal and primary aldosteronism. Felizola, S.J., Maekawa, T., Nakamura, Y., Satoh, F., Ono, Y., Kikuchi, K., Aritomi, S., Ikeda, K., Yoshimura, M., Tojo, K., Sasano, H. J. Steroid. Biochem. Mol. Biol. (2014) [Pubmed]
  13. Glutamate receptors and the regulation of steroidogenesis in the human adrenal gland: the metabotropic pathway. Felizola, S.J., Nakamura, Y., Satoh, F., Morimoto, R., Kikuchi, K., Nakamura, T., Hozawa, A., Wang, L., Onodera, Y., Ise, K., McNamara, K.M., Midorikawa, S., Suzuki, S., Sasano, H. Mol. Cell. Endocrinol. (2014) [Pubmed]
  14. Genetic study of patients with dexamethasone-suppressible aldosteronism without the chimeric CYP11B1/CYP11B2 gene. Fardella, C.E., Pinto, M., Mosso, L., Gómez-Sánchez, C., Jalil, J., Montero, J. J. Clin. Endocrinol. Metab. (2001) [Pubmed]
  15. -344C/T Variant in the Promoter of the Aldosterone Synthase Gene (CYP11B2) Is Associated With Metabolic Syndrome in Men. Russo, P., Lauria, F., Loguercio, M., Barba, G., Arnout, J., Cappuccio, F.P., de Lorgeril, M., Donati, M.B., Iacoviello, L., Krogh, V., van Dongen, M., Siani, A. Am. J. Hypertens. (2007) [Pubmed]
  16. Aldosterone synthase (CYP11B2)-344T/C polymorphism and renoprotective response to losartan treatment in diabetic nephropathy. Schjoedt, K.J., Lajer, M., Andersen, S., Tarnow, L., Rossing, P., Parving, H.H. Scand. J. Clin. Lab. Invest. (2006) [Pubmed]
  17. A compound heterozygote case of type II aldosterone synthase deficiency. Dunlop, F.M., Crock, P.A., Montalto, J., Funder, J.W., Curnow, K.M. J. Clin. Endocrinol. Metab. (2003) [Pubmed]
  18. Amino acid substitution R384P in aldosterone synthase causes corticosterone methyloxidase type I deficiency. Geley, S., Jöhrer, K., Peter, M., Denner, K., Bernhardt, R., Sippell, W.G., Kofler, R. J. Clin. Endocrinol. Metab. (1995) [Pubmed]
  19. Isolation and characterization of rat CYP11B genes involved in late steps of mineralo- and glucocorticoid syntheses. Mukai, K., Imai, M., Shimada, H., Ishimura, Y. J. Biol. Chem. (1993) [Pubmed]
  20. CYP11B2-CYP11B1 haplotypes associated with decreased 11 beta-hydroxylase activity. Ganapathipillai, S., Laval, G., Hoffmann, I.S., Castejon, A.M., Nicod, J., Dick, B., Frey, F.J., Frey, B.M., Cubeddu, L.X., Ferrari, P. J. Clin. Endocrinol. Metab. (2005) [Pubmed]
  21. Functional maturation of the primate fetal adrenal in vivo: 3. Specific zonal localization and developmental regulation of CYP21A2 (P450c21) and CYP11B1/CYP11B2 (P450c11/aldosterone synthase) lead to integrated concept of zonal and temporal steroid biosynthesis. Coulter, C.L., Jaffe, R.B. Endocrinology (1998) [Pubmed]
  22. Expression of 11 beta-hydroxylase (CYP11B1) and aldosterone synthase (CYP11B2) in the human fetal adrenal. Freije, W.A., Pezzi, V., Arici, A., Carr, B.R., Rainey, W.E. J. Soc. Gynecol. Investig. (1997) [Pubmed]
  23. Genetic alterations in patients with primary aldosteronism. Takeda, Y. Hypertens. Res. (2001) [Pubmed]
  24. Recombinant CYP11B genes encode enzymes that can catalyze conversion of 11-deoxycortisol to cortisol, 18-hydroxycortisol, and 18-oxocortisol. Mulatero, P., Curnow, K.M., Aupetit-Faisant, B., Foekling, M., Gomez-Sanchez, C., Veglio, F., Jeunemaitre, X., Corvol, P., Pascoe, L. J. Clin. Endocrinol. Metab. (1998) [Pubmed]
  25. The orphan nuclear receptors NURR1 and NGFIB regulate adrenal aldosterone production. Bassett, M.H., Suzuki, T., Sasano, H., White, P.C., Rainey, W.E. Mol. Endocrinol. (2004) [Pubmed]
  26. Association of Lys173Arg polymorphism with CYP11B2 expression in normal adrenal glands and aldosterone-producing adenomas. Tanahashi, H., Mune, T., Takahashi, Y., Isaji, M., Suwa, T., Morita, H., Yamakita, N., Yasuda, K., Deguchi, T., White, P.C., Takeda, J. J. Clin. Endocrinol. Metab. (2005) [Pubmed]
  27. Ubc9 and Protein Inhibitor of Activated STAT 1 Activate Chicken Ovalbumin Upstream Promoter-Transcription Factor I-mediated Human CYP11B2 Gene Transcription. Kurihara, I., Shibata, H., Kobayashi, S., Suda, N., Ikeda, Y., Yokota, K., Murai, A., Saito, I., Rainey, W.E., Saruta, T. J. Biol. Chem. (2005) [Pubmed]
  28. Role of steroid 11 beta-hydroxylase and steroid 18-hydroxylase in the biosynthesis of glucocorticoids and mineralocorticoids in humans. Kawamoto, T., Mitsuuchi, Y., Toda, K., Yokoyama, Y., Miyahara, K., Miura, S., Ohnishi, T., Ichikawa, Y., Nakao, K., Imura, H. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  29. Angiotensin II and potassium regulate human CYP11B2 transcription through common cis-elements. Clyne, C.D., Zhang, Y., Slutsker, L., Mathis, J.M., White, P.C., Rainey, W.E. Mol. Endocrinol. (1997) [Pubmed]
  30. Calmodulin-dependent kinase I regulates adrenal cell expression of aldosterone synthase. Condon, J.C., Pezzi, V., Drummond, B.M., Yin, S., Rainey, W.E. Endocrinology (2002) [Pubmed]
  31. Regulation of aldosterone synthase in human vascular endothelial cells by angiotensin II and adrenocorticotropin. Takeda, Y., Miyamori, I., Yoneda, T., Hatakeyama, H., Inaba, S., Furukawa, K., Mabuchi, H., Takeda, R. J. Clin. Endocrinol. Metab. (1996) [Pubmed]
  32. Interaction of CYP11B1 (cytochrome P-45011 beta) with CYP11A1 (cytochrome P-450scc) in COS-1 cells. Cao, P.R., Bernhardt, R. Eur. J. Biochem. (1999) [Pubmed]
  33. Familial varieties of primary aldosteronism. Stowasser, M., Gunasekera, T.G., Gordon, R.D. Clin. Exp. Pharmacol. Physiol. (2001) [Pubmed]
  34. Adenovirus-delivered DKK3/WNT4 and Steroidogenesis in Primary Cultures of Adrenocortical Cells. Chen, M., Hornsby, P.J. Horm. Metab. Res. (2006) [Pubmed]
  35. Inborn errors of aldosterone biosynthesis in humans. Shizuta, Y., Kawamoto, T., Mitsuuchi, Y., Miyahara, K., Rösler, A., Ulick, S., Imura, H. Steroids (1995) [Pubmed]
  36. The human genome contains only two CYP11B (P450c11) genes. Zhang, G., Miller, W.L. J. Clin. Endocrinol. Metab. (1996) [Pubmed]
  37. Blood pressure in patients with primary aldosteronism is influenced by bradykinin B(2) receptor and alpha-adducin gene polymorphisms. Mulatero, P., Williams, T.A., Milan, A., Paglieri, C., Rabbia, F., Fallo, F., Veglio, F. J. Clin. Endocrinol. Metab. (2002) [Pubmed]
  38. Aldosterone synthase (CYP11B2) expression and myocardial fibrosis in the failing human heart. Satoh, M., Nakamura, M., Saitoh, H., Satoh, H., Akatsu, T., Iwasaka, J., Masuda, T., Hiramori, K. Clin. Sci. (2002) [Pubmed]
WikiGenes - Universities