The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

kelatorphan     (2S)-2-[[(2R)-2-benzyl-3...

Synonyms: CHEMBL85320, KB-78017, AR-1K2951, LS-186814, LS-187482, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of kelatorphan

 

Psychiatry related information on kelatorphan

  • On the contrary, spontaneous motor activity was reduced by the delta-opioid receptor agonist, whereas kelatorphan increased the movements of the animal [3].
  • Furthermore, these results suggest that kelatorphan may increase self-stimulation behaviour through an action at delta-opioid receptor, while DAGO and morphine may reduce self-stimulation behaviour through an action at mu-opioid receptors [4].
 

High impact information on kelatorphan

 

Biological context of kelatorphan

  • After addition of idazoxan, hyperpolarizing synaptic potentials could be evoked even in the presence of kelatorphan (20 microM) [9].
  • The purpose of this study was to determine whether protection of opioid peptide hydrolysis by the potent enkephalinase inhibitor kelatorphan could prolong this analgesia [10].
  • The pure steroisomer [(R)-3-(N-hydroxy)carboxamido-2-benzylpropanoyl]-L-alanine designated kelatorphan, exhibits also a relatively good inhibitory potency against aminopeptidases (IC50 approximately 10 microM) and can be considered as the first virtually complete inhibitor of enkephalin metabolism [11].
 

Anatomical context of kelatorphan

 

Associations of kelatorphan with other chemical compounds

 

Gene context of kelatorphan

 

Analytical, diagnostic and therapeutic context of kelatorphan

  • Initially, the opioid receptors involved in the augmentation of locomotion produced by endogenous opioids were evaluated by microinjection of kelatorphan, an inhibitor of proteolytic enzymes that inactivates enkephalin, with or without specific antagonists for mu 1 or delta-opioid receptors, naloxonazine or naltrindole, respectively [23].

References

  1. Antinociceptive effect of systemic kelatorphan, in mononeuropathic rats, involves different opioid receptor types. Lee, S.H., Kayser, V., Guilbaud, G. Eur. J. Pharmacol. (1994) [Pubmed]
  2. Comparison of selective and complete inhibitors of enkephalin-degrading enzymes on morphine withdrawal syndrome. Maldonado, R., Daugé, V., Callebert, J., Villette, J.M., Fournié-Zaluski, M.C., Feger, J., Roques, B.P. Eur. J. Pharmacol. (1989) [Pubmed]
  3. Inhibition of enkephalin metabolism and activation of mu- or delta-opioid receptors elicit opposite effects on reward and motility in the ventral mesencephalon. Heidbreder, C., Gewiss, M., Lallemand, S., Roques, B.P., De Witte, P. Neuropharmacology (1992) [Pubmed]
  4. Kelatorphan, a potent enkephalinases inhibitor, and opioid receptor agonists DAGO and DTLET, differentially modulate self-stimulation behaviour depending on the site of administration. de Witte, P., Heidbreder, C., Roques, B.P. Neuropharmacology (1989) [Pubmed]
  5. Phosphoramidon blocks the pressor activity of porcine big endothelin-1-(1-39) in vivo and conversion of big endothelin-1-(1-39) to endothelin-1-(1-21) in vitro. McMahon, E.G., Palomo, M.A., Moore, W.M., McDonald, J.F., Stern, M.K. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  6. Phosphoramidon-sensitive conversion of big endothelin-1 and degradation of endothelin-1 in rat kidney. Fujita, K., Matsumura, Y., Kita, S., Hisaki, K., Takaoka, M., Morimoto, S. Hypertension (1994) [Pubmed]
  7. Effects of the potent analgesic enkephalin-catabolizing enzyme inhibitors RB101 and kelatorphan on respiration. Boudinot, E., Morin-Surun, M., Foutz, A.S., Fournié-Zaluski, M., Roques, B.P., Denavit-Saubié, M. Pain (2001) [Pubmed]
  8. Effects of Kelatorphan and morphine before and after noxious stimulation on immediate-early gene expression in rat spinal cord neurons. Tölle, T.R., Schadrack, J., Castro-Lopes, J.M., Evan, G., Roques, B.P., Zieglgänsberger, W. Pain (1994) [Pubmed]
  9. Potentiation of enkephalin action by peptidase inhibitors in rat locus ceruleus in vitro. Williams, J.T., Christie, M.J., North, R.A., Roques, B.P. J. Pharmacol. Exp. Ther. (1987) [Pubmed]
  10. Prolonged analgesia by enkephalinase inhibition in rats with spinal cord adrenal medullary transplants. Sagen, J., Wang, H. Eur. J. Pharmacol. (1990) [Pubmed]
  11. Bidentate peptides: highly potent new inhibitors of enkephalin degrading enzymes. Bouboutou, R., Waksman, G., Devin, J., Fournié-Zaluski, M.C., Roques, B.P. Life Sci. (1984) [Pubmed]
  12. Comparison of the behavioural effects induced by administration in rat nucleus accumbens or nucleus caudatus of selective mu and delta opioid peptides or kelatorphan an inhibitor of enkephalin-degrading-enzymes. Daugé, V., Rossignol, P., Roques, B.P. Psychopharmacology (Berl.) (1988) [Pubmed]
  13. Opioid and GABA receptors involved in mediation and modulation of tonic and stimulus-evoked inhibition of a spinal reflex in the decerebrated and spinalized rabbit. Clarke, R.W., Bhandari, R.N., Leggett, J. Neuropharmacology (2001) [Pubmed]
  14. Control of breathing by endogenous opioid peptides: possible involvement in sudden infant death syndrome. Morin-Surun, M.P., Boudinot, E., Fournie-Zaluski, M.C., Champagnat, J., Roques, B.P., Denavit-Saubie, M. Neurochem. Int. (1992) [Pubmed]
  15. Effects of kelatorphan and other peptidase inhibitors on the in vitro and in vivo release of methionine-enkephalin-like material from the rat spinal cord. Bourgoin, S., Le Bars, D., Artaud, F., Clot, A.M., Bouboutou, R., Fournie-Zaluski, M.C., Roques, B.P., Hamon, M., Cesselin, F. J. Pharmacol. Exp. Ther. (1986) [Pubmed]
  16. Kelatorphan potentiates the effect of [Met5]enkephalin in the substantia gelatinosa of the cat spinal cord. Morton, C.R., Zhao, Z.Q., Duggan, A.W. Eur. J. Pharmacol. (1987) [Pubmed]
  17. Effect of endopeptidase-24.11 inhibitors and C-ANP receptor ligand on responses evoked in arterioles of rat cremaster muscle by atrial natriuretic peptide. Peyroux, J., Beslot, F., Claperon, N., Fournie-Zaluski, M.C., Roques, B.P. Br. J. Pharmacol. (1995) [Pubmed]
  18. Evidence that endogenous enkephalins and a delta opioid receptor agonist have a common site of action in spinal antinociception. Dickenson, A.H., Sullivan, A.F., Roques, B.P. Eur. J. Pharmacol. (1988) [Pubmed]
  19. Role of delta opioid receptors in the effects of inhibitors of enkephalin-degrading peptidases on the horizontal and vertical components of locomotion in mice. Michael-Titus, A., Dourmap, N., Costentin, J., Schwartz, J.C. Neuropeptides (1990) [Pubmed]
  20. New bidentates as full inhibitors of enkephalin-degrading enzymes: synthesis and analgesic properties. Fournié-Zaluski, M.C., Coulaud, A., Bouboutou, R., Chaillet, P., Devin, J., Waksman, G., Costentin, J., Roques, B.P. J. Med. Chem. (1985) [Pubmed]
  21. Retrograde axonal transport of neurotensin in the dopaminergic nigrostriatal pathway in the rat. Castel, M.N., Malgouris, C., Blanchard, J.C., Laduron, P.M. Neuroscience (1990) [Pubmed]
  22. Endogenous opioids are involved in the genetically determined high preference for ethanol consumption. George, S.R., Roldan, L., Lui, A., Naranjo, C.A. Alcohol. Clin. Exp. Res. (1991) [Pubmed]
  23. Dopamine depletion augments endogenous opioid-induced locomotion in the nucleus accumbens using both mu 1 and delta opioid receptors. Churchill, L., Roques, B.P., Kalivas, P.W. Psychopharmacology (Berl.) (1995) [Pubmed]
 
WikiGenes - Universities