The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Brominal     3,5-dibromo-4-hydroxy- benzonitrile

Synonyms: Brominex, Brominil, Broxynil, Novacorn, Brittox, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Brominal

  • The predicted amino acid sequence of the nitrilase gene showed similarity to that of the bromoxynil nitrilase from Klebsiella ozaenae [1].
  • The amino acid sequence homology between the Rhodococcus nitrilase and the Klebsiella ozaenae bromoxynil nitrilase [Stalker et al. (1988) J. Biol. Chem. 263, 6310-6314] was 38.3%, and a unique cysteinyl residue (Cys-170) in the former nitrilase was conserved at the corresponding position in the latter nitrilase [2].
  • A gene, designated bxn, encoding the bromoxynil-specific nitrilase was constitutively expressed in K. ozaenae and E. coli and subcloned on a 2.6-kilobase PstI DNA segment [3].
  • In addition to its utility for decontaminating PCP-polluted sites, the Flavobacterium sp. may be useful for decontaminating bromoxynil spills [4].
  • To our knowledge, this is the first direct report of deiodination by a bacterium in the Desulfitobacterium genus and the first report of an anaerobic pure culture with the ability to transform bromoxynil or ioxynil [5].

High impact information on Brominal


Chemical compound and disease context of Brominal


Biological context of Brominal

  • Irreversible loss of the ability to metabolize bromoxynil both in E. coli and K. ozaenae was associated with the conversion of the 82-kilobase plasmid to a 68-kilobase species [3].
  • Biotransformation of 3,5-dibromo-4-hydroxybenzonitrile under denitrifying, Fe(III)-reducing, sulfidogenic, and methanogenic conditions [8].
  • In conclusion, further research is needed to investigate whether adiposity is an important modifying factor for persistence of bromoxynil in the body [9].
  • To investigate whether such developmental alterations were specific to RA, or were a more general response to xenobiotic exposure, CD-1 pregnant mice were exposed to RA, valproic acid (VA), or bromoxynil (Br) during organogenesis [10].
  • Tractors, equipped with cabs, were used in nine spray operations.Air sampling, hand washes, and dermal patch dosimeters served as the basis to calculate the amount of bromoxynil (p.e.) available for inhalation, deposition on the hands, and deposition under a standardized set of protective clothing [11].

Anatomical context of Brominal


Associations of Brominal with other chemical compounds


Gene context of Brominal


Analytical, diagnostic and therapeutic context of Brominal


  1. Nitrilase from Rhodococcus rhodochrous J1. Sequencing and overexpression of the gene and identification of an essential cysteine residue. Kobayashi, M., Komeda, H., Yanaka, N., Nagasawa, T., Yamada, H. J. Biol. Chem. (1992) [Pubmed]
  2. Primary structure of an aliphatic nitrile-degrading enzyme, aliphatic nitrilase, from Rhodococcus rhodochrous K22 and expression of its gene and identification of its active site residue. Kobayashi, M., Yanaka, N., Nagasawa, T., Yamada, H. Biochemistry (1992) [Pubmed]
  3. Cloning and expression in Escherichia coli of a Klebsiella ozaenae plasmid-borne gene encoding a nitrilase specific for the herbicide bromoxynil. Stalker, D.M., McBride, K.E. J. Bacteriol. (1987) [Pubmed]
  4. Biodegradation of the herbicide bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) by purified pentachlorophenol hydroxylase and whole cells of Flavobacterium sp. strain ATCC 39723 is accompanied by cyanogenesis. Topp, E., Xun, L.Y., Orser, C.S. Appl. Environ. Microbiol. (1992) [Pubmed]
  5. Dehalogenation of the herbicides bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) and ioxynil (3,5-diiodino-4-hydroxybenzonitrile) by Desulfitobacterium chlororespirans. Cupples, A.M., Sanford, R.A., Sims, G.K. Appl. Environ. Microbiol. (2005) [Pubmed]
  6. Purification and properties of a nitrilase specific for the herbicide bromoxynil and corresponding nucleotide sequence analysis of the bxn gene. Stalker, D.M., Malyj, L.D., McBride, K.E. J. Biol. Chem. (1988) [Pubmed]
  7. Protection by isoprene against singlet oxygen in leaves. Affek, H.P., Yakir, D. Plant Physiol. (2002) [Pubmed]
  8. Biotransformation of 3,5-dibromo-4-hydroxybenzonitrile under denitrifying, Fe(III)-reducing, sulfidogenic, and methanogenic conditions. Knight, V.K., Berman, M.H., Häggblom, M.M. Environ. Toxicol. Chem. (2003) [Pubmed]
  9. Body mass index and bromoxynil exposure in a sample of rural residents during spring herbicide application. Semchuk, K., McDuffie, H., Senthilselvan, A., Cessna, A., Irvine, D. J. Toxicol. Environ. Health Part A (2004) [Pubmed]
  10. Axial skeletal and Hox expression domain alterations induced by retinoic acid, valproic acid, and bromoxynil during murine development. Kawanishi, C.Y., Hartig, P., Bobseine, K.L., Schmid, J., Cardon, M., Massenburg, G., Chernoff, N. J. Biochem. Mol. Toxicol. (2003) [Pubmed]
  11. Exposure of ground-rig applicators to the herbicide bromoxynil applied as a 1:1 mixture of butyrate and octanoate. Cessna, A.J., Grover, R. Arch. Environ. Contam. Toxicol. (2002) [Pubmed]
  12. Significance of supernumerary ribs in rodent developmental toxicity studies: postnatal persistence in rats and mice. Chernoff, N., Rogers, J.M., Turner, C.I., Francis, B.M. Fundamental and applied toxicology : official journal of the Society of Toxicology. (1991) [Pubmed]
  13. Semi-permeable surface analytical reversed-phase column for the improved trace analysis of acidic pesticides in water with coupled-column reversed-phase liquid chromatography with UV detection. Determination of bromoxynil and bentazone in surface water. Hogendoorn, E.A., Westhuis, K., Dijkman, E., Heusinkveld, H.A., den Boer, A.C., Evers, E.A., Baumann, R.A. Journal of chromatography. A. (1999) [Pubmed]
  14. Degradation of ioxynil and bromoxynil as measured by a modified spectrophotometric method. Hsu, J.C., Camper, N.D. Can. J. Microbiol. (1975) [Pubmed]
  15. Influence of pH on pesticide sorption by soil containing wheat residue-derived char. Sheng, G., Yang, Y., Huang, M., Yang, K. Environ. Pollut. (2005) [Pubmed]
  16. Comparative efficacy of five herbicides on winter cereal weeds in semi-arid region of Algeria. Fenni, M., Shakir, A.N., Maillet, J. Mededelingen (Rijksuniversiteit te Gent. Fakulteit van de Landbouwkundige en Toegepaste Biologische Wetenschappen) (2001) [Pubmed]
  17. Cloning and expression of an Arabidopsis nitrilase which can convert indole-3-acetonitrile to the plant hormone, indole-3-acetic acid. Bartling, D., Seedorf, M., Mithöfer, A., Weiler, E.W. Eur. J. Biochem. (1992) [Pubmed]
  18. Development of an ELISA for the detection of bromoxynil in water. Cao, Y., Lu, Y., Long, S., Hong, J., Sheng, G. Environment international. (2005) [Pubmed]
  19. Degradation of the herbicide bromoxynil in Pseudomonas putida. Vokounová, M., Vacek, O., Kunc, F. Folia Microbiol. (Praha) (1992) [Pubmed]
WikiGenes - Universities