The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Xyl-glc     (2R,3S,4R,5R)-3,4,5,6- tetrahydroxy-2-[(3R...

Synonyms: AC1MJ054, D-Glucose, O-D-xylosyl-
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Xyl-glc

 

High impact information on Xyl-glc

  • Two conserved histidine residues (His-101 and His-271) appear to be essential components in the active site of the enzyme xylose (glucose) isomerase (EC 5.3.1.5) [6].
  • Its possible role in the hydrolysis of the maize type II primary cell wall (having xylose, glucose, and arabinose as the major moieties) of the tapetum cells and the stigma surface is discussed [7].
  • Using transcriptome analysis of aerobic chemostat cultures grown on xylose-glucose mixtures and xylose alone, as well as a combination of global gene expression and metabolic flux analysis of anaerobic chemostat cultures grown on xylose-glucose mixtures, we identified the distinguishing characteristics of this unique phenotype [8].
  • To quantitatively analyze metabolic fluxes in recombinant S. cerevisiae during metabolism of xylose-glucose mixtures, we constructed a stable xylose-utilizing recombinant strain, TMB 3001 [9].
  • Three MRPs, Xyl-Lys MRP, Glu-Lys MRP, and Fru-Lys MRP, were prepared by heating lysine with xylose, glucose, and fructose, respectively, at pH 9.0 and 100 degrees C for 3 h and called undialyzed MRPs [10].
 

Chemical compound and disease context of Xyl-glc

 

Biological context of Xyl-glc

 

Anatomical context of Xyl-glc

  • Hypertonic (0.85 M) NaCl caused drinking in all pigs tested, but hypertonic (1.7 M) xylose, glucose or sucrose were less effective, indicating involvement of a cerebrospinal fluid sodium receptor mechanism as well as an osmoreceptor mechanism in the drinking responses [14].
 

Associations of Xyl-glc with other chemical compounds

 

Gene context of Xyl-glc

 

Analytical, diagnostic and therapeutic context of Xyl-glc

References

  1. Catalytic mechanism of xylose (glucose) isomerase from Clostridium thermosulfurogenes. Characterization of the structural gene and function of active site histidine. Lee, C.Y., Bagdasarian, M., Meng, M.H., Zeikus, J.G. J. Biol. Chem. (1990) [Pubmed]
  2. Protein engineering of xylose (glucose) isomerase from Actinoplanes missouriensis. 1. Crystallography and site-directed mutagenesis of metal binding sites. Jenkins, J., Janin, J., Rey, F., Chiadmi, M., van Tilbeurgh, H., Lasters, I., De Maeyer, M., Van Belle, D., Wodak, S.J., Lauwereys, M. Biochemistry (1992) [Pubmed]
  3. Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Walfridsson, M., Bao, X., Anderlund, M., Lilius, G., Bülow, L., Hahn-Hägerdal, B. Appl. Environ. Microbiol. (1996) [Pubmed]
  4. Purification and cloning of a thermostable xylose (glucose) isomerase with an acidic pH optimum from Thermoanaerobacterium strain JW/SL-YS 489. Liu, S.Y., Wiegel, J., Gherardini, F.C. J. Bacteriol. (1996) [Pubmed]
  5. Glucose-to-fructose conversion at high temperatures with xylose (glucose) isomerases from Streptomyces murinus and two hyperthermophilic Thermotoga species. Bandlish, R.K., Michael Hess, J., Epting, K.L., Vieille, C., Kelly, R.M. Biotechnol. Bioeng. (2002) [Pubmed]
  6. Identification of essential histidine residues in the active site of Escherichia coli xylose (glucose) isomerase. Batt, C.A., Jamieson, A.C., Vandeyar, M.A. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  7. The predominant protein on the surface of maize pollen is an endoxylanase synthesized by a tapetum mRNA with a long 5' leader. Bih, F.Y., Wu, S.S., Ratnayake, C., Walling, L.L., Nothnagel, E.A., Huang, A.H. J. Biol. Chem. (1999) [Pubmed]
  8. Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis. Sonderegger, M., Jeppsson, M., Hahn-Hägerdal, B., Sauer, U. Appl. Environ. Microbiol. (2004) [Pubmed]
  9. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Eliasson, A., Christensson, C., Wahlbom, C.F., Hahn-Hägerdal, B. Appl. Environ. Microbiol. (2000) [Pubmed]
  10. Influence of Maillard reaction products on DNA damage in human lymphocytes. Yen, G.C., Liao, C.M., Wu, S.C. J. Agric. Food Chem. (2002) [Pubmed]
  11. Combined effect of betaine and trehalose on osmotic tolerance of Escherichia coli in mineral salts medium. Miller, E.N., Ingram, L.O. Biotechnol. Lett. (2007) [Pubmed]
  12. Isolation and characterization of a xylose-glucose isomerase from a new strain Streptomyces thermovulgaris 127, var. 7-86. Raykovska, V., Dolashka-Angelova, P., Paskaleva, D., Stoeva, S., Abashev, J., Kirkov, L., Voelter, W. Biochem. Cell Biol. (2001) [Pubmed]
  13. Hyperosmolality and pancreatic blood flow. Järhult, J., Thulin, A. Pflugers Arch. (1977) [Pubmed]
  14. Operant drinking in pigs following intracerebroventricular injections of hypertonic solutions and angiotensin II. Baldwin, B.A., Thornton, S.N. Physiol. Behav. (1986) [Pubmed]
  15. Effects of water-soluble hemicellulose from soybean hull on serum antibody levels and activation of macrophages in rats. Nagata, J., Higashiuesato, Y., Maeda, G., Chinen, I., Saito, M., Iwabuchi, K., Onoē, K. J. Agric. Food Chem. (2001) [Pubmed]
  16. Glipizide does not affect absorption of glucose and xylose in diabetics without residual beta-cell function. Lins, P.E., Kollind, M., Adamson, U. Acta medica Scandinavica. (1986) [Pubmed]
  17. In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Bro, C., Regenberg, B., Förster, J., Nielsen, J. Metab. Eng. (2006) [Pubmed]
  18. Molecular cloning and expression of a thermostable xylose (glucose) isomerase gene, xylA, from Streptomyces chibaensis J-59. Joo, G.J., Shin, S., Heo, G.Y., Kim, Y.M., Rhee, I.K. J. Microbiol. (2005) [Pubmed]
  19. Protein engineering of xylose (glucose) isomerase from Actinoplanes missouriensis. 3. Changing metal specificity and the pH profile by site-directed mutagenesis. van Tilbeurgh, H., Jenkins, J., Chiadmi, M., Janin, J., Wodak, S.J., Mrabet, N.T., Lambeir, A.M. Biochemistry (1992) [Pubmed]
 
WikiGenes - Universities