The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Apoa2  -  apolipoprotein A-II

Mus musculus

Synonyms: Alp-2, Apo-AII, ApoA-II, ApoAII, Apoa-2, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Apoa2

 

High impact information on Apoa2

  • In contrast, eNOS is not activated by purified forms of the major HDL apolipoproteins ApoA-I and ApoA-II or by low-density lipoprotein [4].
  • A locus on distal chromosome 1 containing the apolipoprotein AII gene was linked to HDL-cholesterol levels on both the chow and the atherogenic diets, but this locus did not contribute to the decrease in HDL-cholesterol in response to the diet [5].
  • ApoA-II gene expression is unaffected [6].
  • To test whether variations of the apoAII gene influence plasma lipid metabolism in humans, we studied 306 individuals in 25 families enriched for coronary artery disease [7].
  • Ath-1 is clearly separable from Alp-2, and the distance between these genes is 6.0 centimorgans with a standard error of 4.2 centimorgans [8].
 

Biological context of Apoa2

  • Herein, we report using a two-step process to identify Apoa2 as the gene underlying Hdlq5, a QTL for plasma high-density lipoprotein cholesterol (HDL) levels on mouse chromosome 1 [9].
  • These findings support Apoa2 as the underlying Hdlq5 gene and suggest the Apoa2 polymorphisms responsible for the Hdlq5 phenotype [9].
  • Three different Apoa2 alleles are known on the basis of amino acid substitutions at four residues [10].
  • By testing all pairs of marker loci, I found a significant interaction between Cq3 and the Apoa2 locus, and F(2) mice with the Apoa2(KK)/Apoa2(KK); D3Mit102(B6)/D3Mit102(B6) genotype had significantly higher cholesterol levels than did F(2) mice with other genotypes [11].
  • To identify additional HDL-C level quantitative trait loci (QTLs), while controlling for the effect of the Apoa2 locus, we performed linkage analysis in 179 standard diet-fed F(2) mice derived from strains BALB/cJ and B6.C-H25(c) (a congenic strain carrying the BALB/c Apoa2 allele) [12].
 

Anatomical context of Apoa2

 

Associations of Apoa2 with chemical compounds

 

Regulatory relationships of Apoa2

 

Other interactions of Apoa2

 

Analytical, diagnostic and therapeutic context of Apoa2

References

  1. Age-associated decreases in the messenger ribonucleic acid level and the rate of synthesis of apolipoprotein A-II in murine senile amyloidosis. Kitagawa, K., Naiki, H., Takeda, T., Higuchi, K. Lab. Invest. (1994) [Pubmed]
  2. Dramatically decreased high density lipoprotein cholesterol, increased remnant clearance, and insulin hypersensitivity in apolipoprotein A-II knockout mice suggest a complex role for apolipoprotein A-II in atherosclerosis susceptibility. Weng, W., Breslow, J.L. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  3. Mouse senile amyloid deposition is suppressed by adenovirus-mediated overexpression of amyloid-resistant apolipoprotein A-II. Chiba, T., Kogishi, K., Wang, J., Xia, C., Matsushita, T., Miyazaki, J., Saito, I., Hosokawa, M., Higuchi, K. Am. J. Pathol. (1999) [Pubmed]
  4. High-density lipoprotein binding to scavenger receptor-BI activates endothelial nitric oxide synthase. Yuhanna, I.S., Zhu, Y., Cox, B.E., Hahner, L.D., Osborne-Lawrence, S., Lu, P., Marcel, Y.L., Anderson, R.G., Mendelsohn, M.E., Hobbs, H.H., Shaul, P.W. Nat. Med. (2001) [Pubmed]
  5. Complex genetic control of HDL levels in mice in response to an atherogenic diet. Coordinate regulation of HDL levels and bile acid metabolism. Machleder, D., Ivandic, B., Welch, C., Castellani, L., Reue, K., Lusis, A.J. J. Clin. Invest. (1997) [Pubmed]
  6. Severe atherosclerosis and hypoalphalipoproteinemia in the staggerer mouse, a mutant of the nuclear receptor RORalpha. Mamontova, A., Séguret-Macé, S., Esposito, B., Chaniale, C., Bouly, M., Delhaye-Bouchaud, N., Luc, G., Staels, B., Duverger, N., Mariani, J., Tedgui, A. Circulation (1998) [Pubmed]
  7. Evidence for linkage of the apolipoprotein A-II locus to plasma apolipoprotein A-II and free fatty acid levels in mice and humans. Warden, C.H., Daluiski, A., Bu, X., Purcell-Huynh, D.A., De Meester, C., Shieh, B.H., Puppione, D.L., Gray, R.M., Reaven, G.M., Chen, Y.D. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  8. Ath-1, a gene determining atherosclerosis susceptibility and high density lipoprotein levels in mice. Paigen, B., Mitchell, D., Reue, K., Morrow, A., Lusis, A.J., LeBoeuf, R.C. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  9. Haplotype analysis in multiple crosses to identify a QTL gene. Wang, X., Korstanje, R., Higgins, D., Paigen, B. Genome Res. (2004) [Pubmed]
  10. Quantitative trait locus analysis of plasma cholesterol and triglyceride levels in C57BL/6J x RR F2 mice. Suto, J., Takahashi, Y., Sekikawa, K. Biochem. Genet. (2004) [Pubmed]
  11. Characterization of Cq3, a Quantitative Trait Locus that Controls Plasma Cholesterol and Phospholipid Levels in Mice. Suto, J. J. Vet. Med. Sci. (2006) [Pubmed]
  12. Novel QTLs for HDL levels identified in mice by controlling for Apoa2 allelic effects: confirmation of a chromosome 6 locus in a congenic strain. Welch, C.L., Bretschger, S., Wen, P.Z., Mehrabian, M., Latib, N., Fruchart-Najib, J., Fruchart, J.C., Myrick, C., Lusis, A.J. Physiol. Genomics (2004) [Pubmed]
  13. Genetic control of lipid transport in mice. II. Genes controlling structure of high density lipoproteins. Lusis, A.J., Taylor, B.A., Wangenstein, R.W., LeBoeuf, R.C. J. Biol. Chem. (1983) [Pubmed]
  14. Studies with apolipoprotein A-II transgenic mice indicate a role for HDLs in adiposity and insulin resistance. Castellani, L.W., Goto, A.M., Lusis, A.J. Diabetes (2001) [Pubmed]
  15. Efficient ex vivo gene transfer into non-human primate hepatocytes using HIV-1 derived lentiviral vectors. Parouchev, A., Nguyen, T.H., Dagher, I., Mainot, S., Groyer-Picard, M.T., Branger, J., Gonin, P., Di Santo, J., Franco, D., Gras, G., Weber, A. J. Hepatol. (2006) [Pubmed]
  16. The SrtA Sortase of Streptococcus agalactiae is required for cell wall anchoring of proteins containing the LPXTG motif, for adhesion to epithelial cells, and for colonization of the mouse intestine. Lalioui, L., Pellegrini, E., Dramsi, S., Baptista, M., Bourgeois, N., Doucet-Populaire, F., Rusniok, C., Zouine, M., Glaser, P., Kunst, F., Poyart, C., Trieu-Cuot, P. Infect. Immun. (2005) [Pubmed]
  17. The single proline-glutamine substitution at position 5 enhances the potency of amyloid fibril formation of murine apo A-II. Higuchi, K., Yonezu, T., Tsunasawa, S., Sakiyama, F., Takeda, T. FEBS Lett. (1986) [Pubmed]
  18. Accumulation of pro-apolipoprotein A-II in mouse senile amyloid fibrils. Higuchi, K., Kogishi, K., Wang, J., Xia, C., Chiba, T., Matsushita, T., Hosokawa, M. Biochem. J. (1997) [Pubmed]
  19. Apolipoprotein AII enrichment of HDL enhances their affinity for class B type I scavenger receptor but inhibits specific cholesteryl ester uptake. Pilon, A., Briand, O., Lestavel, S., Copin, C., Majd, Z., Fruchart, J.C., Castro, G., Clavey, V. Arterioscler. Thromb. Vasc. Biol. (2000) [Pubmed]
  20. The molecular structure of apolipoprotein A-II modulates the capacity of HDL to promote cell cholesterol efflux. Bernini, F., Calabresi, L., Bonfadini, G., Franceschini, G. Biochim. Biophys. Acta (1996) [Pubmed]
  21. Apolipoprotein gene polymorphisms as cause of cholesterol QTLs in mice. Suto, J. J. Vet. Med. Sci. (2005) [Pubmed]
  22. Quantitative trait locus analysis of susceptibility to diet-induced atherosclerosis in recombinant inbred mice. Hyman, R.W., Frank, S., Warden, C.H., Daluiski, A., Heller, R., Lusis, A.J. Biochem. Genet. (1994) [Pubmed]
  23. Molecular cloning and nucleotide sequence of cDNA for murine senile amyloid protein: nucleotide substitutions found in apolipoprotein A-II cDNA of senescence accelerated mouse (SAM). Kunisada, T., Higuchi, K., Aota, S., Takeda, T., Yamagishi, H. Nucleic Acids Res. (1986) [Pubmed]
  24. Polymorphism of apolipoprotein A-II (apoA-II) among inbred strains of mice. Relationship between the molecular type of apoA-II and mouse senile amyloidosis. Higuchi, K., Kitagawa, K., Naiki, H., Hanada, K., Hosokawa, M., Takeda, T. Biochem. J. (1991) [Pubmed]
  25. Dietary fat modulation of apoA-II metabolism and prevention of senile amyloidosis in the senescence- accelerated mouse. Umezawa, M., Tatematsu, K., Korenaga, T., Fu, X., Matushita, T., Okuyama, H., Hosokawa, M., Takeda, T., Higuchi, K. J. Lipid Res. (2003) [Pubmed]
  26. Extrahepatic expression of apolipoprotein A-II in mouse tissues: possible contribution to mouse senile amyloidosis. Fu, L., Matsuyama, I., Chiba, T., Xing, Y., Korenaga, T., Guo, Z., Fu, X., Nakayama, J., Mori, M., Higuchi, K. J. Histochem. Cytochem. (2001) [Pubmed]
 
WikiGenes - Universities