The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Csrp3  -  cysteine and glycine-rich protein 3

Mus musculus

Synonyms: CRP3, Clp, Cysteine and glycine-rich protein 3, Cysteine-rich protein 3, LIM domain protein, cardiac, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Csrp3


High impact information on Csrp3


Chemical compound and disease context of Csrp3

  • The MLP(-/-) mouse with dilated cardiomyopathy is used as a model to explore novel therapeutic interventions but the alterations in Ca(2+) handling in MLP(-/-) remain incompletely understood [8].

Biological context of Csrp3

  • Muscle LIM protein promotes myogenesis by enhancing the activity of MyoD [9].
  • Although MLP lacks a functional transcription activation domain, we propose that it serves as a cofactor for the myogenic bHLH proteins by increasing their interaction with specific DNA regulatory elements [9].
  • Activation of the stress-responsive, prohypertrophic calcineurin-nuclear factor of activated T-cells (NFAT) signaling pathway was reduced in MLP+/- mice after MI, as shown by a blunted transcriptional activation of NFAT in cardiomyocytes isolated from MLP+/-/NFAT-luciferase reporter gene transgenic mice [4].
  • This lag is accompanied by decreased expression of the muscle regulatory factor MyoD, suggesting that MLP may influence gene expression [10].
  • Increased phospholamban phosphorylation limits the force-frequency response in the MLP-/- mouse with heart failure [8].

Anatomical context of Csrp3

  • Overexpression of MLP in C2C12 myoblasts enhances skeletal myogenesis, whereas inhibition of MLP activity blocks terminal differentiation [9].
  • This mutation also disrupted the interaction with MLP and appeared to inhibit alpha-actinin function in cultured cells, in respect to the nuclear localization of actinin and the initiation of cellular differentiation [2].
  • Binding of MLP to the actin cytoskeleton is specifically attributable to its second LIM motif [11].
  • We show that MLP, CRP, and betaCRP define a subclass of LIM-only proteins with unique dual subcellular localization in the nucleus and along actin-based filaments in the cytosol [11].
  • We found that MLP promoted the expression of the AChR gamma-subunit gene in C2C12 myotubes, but not in C2C12 myoblasts or NIH3T3 fibroblasts [12].

Associations of Csrp3 with chemical compounds

  • We identified a patient with DCM and EFE, having a mutation in MLP with the residue lysine 69 substituted by arginine (K69R) [2].
  • However, in contrast to WT, at higher frequencies the [Ca(2+)](i) transient amplitude declined in MLP(-/-) and there was no increase in SR Ca(2+) content [8].
  • Neuraminidase had no effect on MLP-/- cells thus suggesting that Na+ channels in these cells were sialic acid-deficient [13].
  • Fas-ligand and ceramide-induced apoptosis were significantly decreased in MLP deficient VSMC (n=6, P<0.001) [14].
  • Cn MLP and Cn H99 were similar with respect to carbon assimilation patterns, rates of glucose consumption, growth rates at 30 degrees C, urease and phenoloxidase activities, morphology, capsule formation, mating type, electrophoretic karyotype, rapid amplification of polymorphic DNA (RAPD) patterns and antifungal susceptibility [15].

Other interactions of Csrp3


Analytical, diagnostic and therapeutic context of Csrp3


  1. PKC-alpha regulates cardiac contractility and propensity toward heart failure. Braz, J.C., Gregory, K., Pathak, A., Zhao, W., Sahin, B., Klevitsky, R., Kimball, T.F., Lorenz, J.N., Nairn, A.C., Liggett, S.B., Bodi, I., Wang, S., Schwartz, A., Lakatta, E.G., DePaoli-Roach, A.A., Robbins, J., Hewett, T.E., Bibb, J.A., Westfall, M.V., Kranias, E.G., Molkentin, J.D. Nat. Med. (2004) [Pubmed]
  2. Mutations in the muscle LIM protein and alpha-actinin-2 genes in dilated cardiomyopathy and endocardial fibroelastosis. Mohapatra, B., Jimenez, S., Lin, J.H., Bowles, K.R., Coveler, K.J., Marx, J.G., Chrisco, M.A., Murphy, R.T., Lurie, P.R., Schwartz, R.J., Elliott, P.M., Vatta, M., McKenna, W., Towbin, J.A., Bowles, N.E. Mol. Genet. Metab. (2003) [Pubmed]
  3. MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Arber, S., Hunter, J.J., Ross, J., Hongo, M., Sansig, G., Borg, J., Perriard, J.C., Chien, K.R., Caroni, P. Cell (1997) [Pubmed]
  4. Attenuation of cardiac remodeling after myocardial infarction by muscle LIM protein-calcineurin signaling at the sarcomeric Z-disc. Heineke, J., Ruetten, H., Willenbockel, C., Gross, S.C., Naguib, M., Schaefer, A., Kempf, T., Hilfiker-Kleiner, D., Caroni, P., Kraft, T., Kaiser, R.A., Molkentin, J.D., Drexler, H., Wollert, K.C. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  5. Mutations in the human muscle LIM protein gene in families with hypertrophic cardiomyopathy. Geier, C., Perrot, A., Ozcelik, C., Binner, P., Counsell, D., Hoffmann, K., Pilz, B., Martiniak, Y., Gehmlich, K., van der Ven, P.F., Fürst, D.O., Vornwald, A., von Hodenberg, E., Nürnberg, P., Scheffold, T., Dietz, R., Osterziel, K.J. Circulation (2003) [Pubmed]
  6. The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Knöll, R., Hoshijima, M., Hoffman, H.M., Person, V., Lorenzen-Schmidt, I., Bang, M.L., Hayashi, T., Shiga, N., Yasukawa, H., Schaper, W., McKenna, W., Yokoyama, M., Schork, N.J., Omens, J.H., McCulloch, A.D., Kimura, A., Gregorio, C.C., Poller, W., Schaper, J., Schultheiss, H.P., Chien, K.R. Cell (2002) [Pubmed]
  7. Muscle LIM protein, a novel essential regulator of myogenesis, promotes myogenic differentiation. Arber, S., Halder, G., Caroni, P. Cell (1994) [Pubmed]
  8. Increased phospholamban phosphorylation limits the force-frequency response in the MLP-/- mouse with heart failure. Antoons, G., Vangheluwe, P., Volders, P.G., Bito, V., Holemans, P., Ceci, M., Wuytack, F., Caroni, P., Mubagwa, K., Sipido, K.R. J. Mol. Cell. Cardiol. (2006) [Pubmed]
  9. Muscle LIM protein promotes myogenesis by enhancing the activity of MyoD. Kong, Y., Flick, M.J., Kudla, A.J., Konieczny, S.F. Mol. Cell. Biol. (1997) [Pubmed]
  10. Muscle LIM protein plays both structural and functional roles in skeletal muscle. Barash, I.A., Mathew, L., Lahey, M., Greaser, M.L., Lieber, R.L. Am. J. Physiol., Cell Physiol. (2005) [Pubmed]
  11. Specificity of single LIM motifs in targeting and LIM/LIM interactions in situ. Arber, S., Caroni, P. Genes Dev. (1996) [Pubmed]
  12. Muscle LIM protein promotes expression of the acetylcholine receptor gamma-subunit gene cooperatively with the myogenin-E12 complex. Lu, P.Y., Taylor, M., Jia, H.T., Ni, J.H. Cell. Mol. Life Sci. (2004) [Pubmed]
  13. Role of sodium channel deglycosylation in the genesis of cardiac arrhythmias in heart failure. Ufret-Vincenty, C.A., Baro, D.J., Lederer, W.J., Rockman, H.A., Quinones, L.E., Santana, L.F. J. Biol. Chem. (2001) [Pubmed]
  14. A role for muscle LIM protein (MLP) in vascular remodeling. Wang, X., Li, Q., Adhikari, N., Hall, J.L. J. Mol. Cell. Cardiol. (2006) [Pubmed]
  15. Stress tolerance and pathogenic potential of a mannitol mutant of Cryptococcus neoformans. Chaturvedi, V., Flynn, T., Niehaus, W.G., Wong, B. Microbiology (Reading, Engl.) (1996) [Pubmed]
  16. Effects of streptozotocin-induced diabetes and physical training on gene expression of titin-based stretch-sensing complexes in mouse striated muscle. Lehti, T.M., Silvennoinen, M., Kivelä, R., Kainulainen, H., Komulainen, J. Am. J. Physiol. Endocrinol. Metab. (2007) [Pubmed]
  17. Targeted disruption of N-RAP gene function by RNA interference: a role for N-RAP in myofibril organization. Dhume, A., Lu, S., Horowits, R. Cell Motil. Cytoskeleton (2006) [Pubmed]
  18. Muscle LIM protein deficiency leads to alterations in passive ventricular mechanics. Omens, J.H., Usyk, T.P., Li, Z., McCulloch, A.D. Am. J. Physiol. Heart Circ. Physiol. (2002) [Pubmed]
  19. Altered energy transfer from mitochondria to sarcoplasmic reticulum after cytoarchitectural perturbations in mice hearts. Wilding, J.R., Joubert, F., de Araujo, C., Fortin, D., Novotova, M., Veksler, V., Ventura-Clapier, R. J. Physiol. (Lond.) (2006) [Pubmed]
  20. Dystrophin- and MLP-deficient mouse hearts: marked differences in morphology and function, but similar accumulation of cytoskeletal proteins. Wilding, J.R., Schneider, J.E., Sang, A.E., Davies, K.E., Neubauer, S., Clarke, K. FASEB J. (2005) [Pubmed]
  21. Cellular and functional defects in a mouse model of heart failure. Esposito, G., Santana, L.F., Dilly, K., Cruz, J.D., Mao, L., Lederer, W.J., Rockman, H.A. Am. J. Physiol. Heart Circ. Physiol. (2000) [Pubmed]
WikiGenes - Universities