The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

py  -  polydactyly

Mus musculus

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of py

 

Psychiatry related information on py

 

High impact information on py

 

Chemical compound and disease context of py

 

Biological context of py

 

Anatomical context of py

 

Associations of py with chemical compounds

  • 5-Bromodeoxyuridine (BrdU) is known as a potent teratogen and has been reported to induce polydactyly and other limb malformations in rodents (DiPaolo, Science 145, 501-503, 1964) [21].
  • These findings indicated that a subteratogenic dose of Ara-C prevented the genetic expression of polydactyly in almost all Pdn/+ and some cases of Pdn/Pdn mice.(ABSTRACT TRUNCATED AT 250 WORDS)[14]
  • Therefore, mitomycin-C teratogenicity in terms of the manifestation of cervical rib, polydactyly and tail anomaly, but not vertebral anomaly, was suggested to be enhanced by methylmercury [22].
  • All-trans retinoic acid (RA) administered on day 10 or 11 of gestation, but not on day 9, increased the incidence of polydactyly at each gestational day examined [23].
  • Effects of all-trans-retinoic acid on limb development in the genetic polydactyly mouse [24].
 

Regulatory relationships of py

 

Other interactions of py

  • Enforced expression of any of several 5'Hoxd genes causes polydactyly of different distinct digit types with posterior transformations in a Gli3(+) background, whereas, in Gli3 null limbs, polydactylous digits are all similar, short and dysmorphic, even though endogenous 5'Hoxd genes are broadly misexpressed [26].
  • Several naturally occurring mouse mutations with the phenotype of preaxial polydactyly exhibit ectopic Shh expression at the anterior limb margin [27].
  • The mouse mutant Doublefoot (Dbf) shows preaxial polydactyly of all four limbs [28].
  • Evidence that preaxial polydactyly in the Doublefoot mutant is due to ectopic Indian Hedgehog signaling [27].
  • The polydactyly of Dkk1(d/d) mice was corrected by reduced expression of Lrp5 or Lrp6 [29].
 

Analytical, diagnostic and therapeutic context of py

  • Neuro-glial neurotrophic interaction in the S-100 beta retarded mutant mouse (Polydactyly Nagoya). III. Transplantation study [30].
  • Neuro-glial neurotrophic interaction in the S-100 beta retarded mutant mouse (Polydactyly Nagoya). II. Co-cultures study [31].
  • Fetal laser surgery in genetic polydactyly mice [32].
  • Specific long bone reductions occurred after treatment on the 11th or 11.5 day and were accompanied by preaxial polydactyly; treatment on the 12th or 12.5 day produced high incidence of ectrodactyly but no long bone reductions [33].
  • A hereditary preaxial polydactyly mouse (Pdn) provides an opportunity to study the effects of this malformation on the surrounding morphological structures and, specifically, on the volar pads, i.e., the sites over which the dermatoglyphic patterns develop [34].

References

  1. A direct functional link between the multi-PDZ domain protein GRIP1 and the Fraser syndrome protein Fras1. Takamiya, K., Kostourou, V., Adams, S., Jadeja, S., Chalepakis, G., Scambler, P.J., Huganir, R.L., Adams, R.H. Nat. Genet. (2004) [Pubmed]
  2. MKS1, encoding a component of the flagellar apparatus basal body proteome, is mutated in Meckel syndrome. Kyttälä, M., Tallila, J., Salonen, R., Kopra, O., Kohlschmidt, N., Paavola-Sakki, P., Peltonen, L., Kestilä, M. Nat. Genet. (2006) [Pubmed]
  3. Oppositely imprinted genes p57(Kip2) and igf2 interact in a mouse model for Beckwith-Wiedemann syndrome. Caspary, T., Cleary, M.A., Perlman, E.J., Zhang, P., Elledge, S.J., Tilghman, S.M. Genes Dev. (1999) [Pubmed]
  4. Comparative genomics and gene expression analysis identifies BBS9, a new Bardet-Biedl syndrome gene. Nishimura, D.Y., Swiderski, R.E., Searby, C.C., Berg, E.M., Ferguson, A.L., Hennekam, R., Merin, S., Weleber, R.G., Biesecker, L.G., Stone, E.M., Sheffield, V.C. Am. J. Hum. Genet. (2005) [Pubmed]
  5. Mkks-null mice have a phenotype resembling Bardet-Biedl syndrome. Fath, M.A., Mullins, R.F., Searby, C., Nishimura, D.Y., Wei, J., Rahmouni, K., Davis, R.E., Tayeh, M.K., Andrews, M., Yang, B., Sigmund, C.D., Stone, E.M., Sheffield, V.C. Hum. Mol. Genet. (2005) [Pubmed]
  6. Positional cloning of a novel gene on chromosome 16q causing Bardet-Biedl syndrome (BBS2). Nishimura, D.Y., Searby, C.C., Carmi, R., Elbedour, K., Van Maldergem, L., Fulton, A.B., Lam, B.L., Powell, B.R., Swiderski, R.E., Bugge, K.E., Haider, N.B., Kwitek-Black, A.E., Ying, L., Duhl, D.M., Gorman, S.W., Heon, E., Iannaccone, A., Bonneau, D., Biesecker, L.G., Jacobson, S.G., Stone, E.M., Sheffield, V.C. Hum. Mol. Genet. (2001) [Pubmed]
  7. The mouse fidgetin gene defines a new role for AAA family proteins in mammalian development. Cox, G.A., Mahaffey, C.L., Nystuen, A., Letts, V.A., Frankel, W.N. Nat. Genet. (2000) [Pubmed]
  8. A mouse model of greig cephalopolysyndactyly syndrome: the extra-toesJ mutation contains an intragenic deletion of the Gli3 gene. Hui, C.C., Joyner, A.L. Nat. Genet. (1993) [Pubmed]
  9. Disruption of a long-range cis-acting regulator for Shh causes preaxial polydactyly. Lettice, L.A., Horikoshi, T., Heaney, S.J., van Baren, M.J., van der Linde, H.C., Breedveld, G.J., Joosse, M., Akarsu, N., Oostra, B.A., Endo, N., Shibata, M., Suzuki, M., Takahashi, E., Shinka, T., Nakahori, Y., Ayusawa, D., Nakabayashi, K., Scherer, S.W., Heutink, P., Hill, R.E., Noji, S. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  10. A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Lettice, L.A., Heaney, S.J., Purdie, L.A., Li, L., de Beer, P., Oostra, B.A., Goode, D., Elgar, G., Hill, R.E., de Graaff, E. Hum. Mol. Genet. (2003) [Pubmed]
  11. The synpolydactyly homolog (spdh) mutation in the mouse -- a defect in patterning and growth of limb cartilage elements. Albrecht, A.N., Schwabe, G.C., Stricker, S., Böddrich, A., Wanker, E.E., Mundlos, S. Mech. Dev. (2002) [Pubmed]
  12. Cytogenotoxicities of sublimed urethane gas to the mouse embryo. Nomura, T., Tanaka, S., Kurokawa, N., Shibata, K., Nakajima, H., Kurishita, A., Hongyo, T., Ishii, Y. Mutat. Res. (1996) [Pubmed]
  13. Inhibiting effects of nicotinamide on urethane-induced malformations and tumors in mice. Gotoh, H., Nomura, T., Nakajima, H., Hasegawa, C., Sakamoto, Y. Mutat. Res. (1988) [Pubmed]
  14. Prevention of polydactyly manifestation in Polydactyly Nagoya (Pdn) mice by administration of cytosine arabinoside during pregnancy. Naruse, I., Kameyama, Y. Teratology (1986) [Pubmed]
  15. A new spontaneous mouse mutation of Hoxd13 with a polyalanine expansion and phenotype similar to human synpolydactyly. Johnson, K.R., Sweet, H.O., Donahue, L.R., Ward-Bailey, P., Bronson, R.T., Davisson, M.T. Hum. Mol. Genet. (1998) [Pubmed]
  16. Skeletal development is regulated by fibroblast growth factor receptor 1 signalling dynamics. Hajihosseini, M.K., Lalioti, M.D., Arthaud, S., Burgar, H.R., Brown, J.M., Twigg, S.R., Wilkie, A.O., Heath, J.K. Development (2004) [Pubmed]
  17. Mouse patched1 controls body size determination and limb patterning. Milenkovic, L., Goodrich, L.V., Higgins, K.M., Scott, M.P. Development (1999) [Pubmed]
  18. Distribution of polarizing activity and potential for limb formation in mouse and chick embryos and possible relationships to polydactyly. Tanaka, M., Cohn, M.J., Ashby, P., Davey, M., Martin, P., Tickle, C. Development (2000) [Pubmed]
  19. Identification of sonic hedgehog as a candidate gene responsible for the polydactylous mouse mutant Sasquatch. Sharpe, J., Lettice, L., Hecksher-Sorensen, J., Fox, M., Hill, R., Krumlauf, R. Curr. Biol. (1999) [Pubmed]
  20. Doubleridge, a mouse mutant with defective compaction of the apical ectodermal ridge and normal dorsal-ventral patterning of the limb. Adamska, M., MacDonald, B.T., Meisler, M.H. Dev. Biol. (2003) [Pubmed]
  21. Alteration of programmed cell death and gene expression by 5-bromodeoxyuridine during limb development in mice. Nakamura, N., Fujioka, M., Mori, C. Toxicol. Appl. Pharmacol. (2000) [Pubmed]
  22. Teratogenic interactions between methylmercury and mitomycin-C in mice. Inouye, M., Kajiwara, Y. Arch. Toxicol. (1988) [Pubmed]
  23. Spontaneous and retinoic acid-induced postaxial polydactyly in mice. Cusic, A.M., Dagg, C.P. Teratology (1985) [Pubmed]
  24. Effects of all-trans-retinoic acid on limb development in the genetic polydactyly mouse. Tamagawa, M., Morita, J., Naruse, I. The Journal of toxicological sciences. (1995) [Pubmed]
  25. Bapx1 homeobox gene gain-of-function mice show preaxial polydactyly and activated Shh signaling in the developing limb. Tribioli, C., Lufkin, T. Dev. Dyn. (2006) [Pubmed]
  26. Direct interaction with Hoxd proteins reverses Gli3-repressor function to promote digit formation downstream of Shh. Chen, Y., Knezevic, V., Ervin, V., Hutson, R., Ward, Y., Mackem, S. Development (2004) [Pubmed]
  27. Evidence that preaxial polydactyly in the Doublefoot mutant is due to ectopic Indian Hedgehog signaling. Yang, Y., Guillot, P., Boyd, Y., Lyon, M.F., McMahon, A.P. Development (1998) [Pubmed]
  28. Sonic hedgehog is not required for polarising activity in the Doublefoot mutant mouse limb bud. Hayes, C., Brown, J.M., Lyon, M.F., Morriss-Kay, G.M. Development (1998) [Pubmed]
  29. Hypomorphic expression of Dkk1 in the doubleridge mouse: dose dependence and compensatory interactions with Lrp6. MacDonald, B.T., Adamska, M., Meisler, M.H. Development (2004) [Pubmed]
  30. Neuro-glial neurotrophic interaction in the S-100 beta retarded mutant mouse (Polydactyly Nagoya). III. Transplantation study. Ueda, S., Aikawa, M., Kawata, M., Naruse, I., Whitaker-Azmitia, P.M., Azmitia, E.C. Brain Res. (1996) [Pubmed]
  31. Neuro-glial neurotrophic interaction in the S-100 beta retarded mutant mouse (Polydactyly Nagoya). II. Co-cultures study. Ueda, S., Hou, X.P., Whitaker-Azmitia, P.M., Azmitia, E.C. Brain Res. (1994) [Pubmed]
  32. Fetal laser surgery in genetic polydactyly mice. Naruse, I., Kameyama, Y. Teratology (1990) [Pubmed]
  33. Limb development in mouse embryos. III. Cellular events underlying the determination of altered skeletal patterns following treatment with 5'fluoro-2-deoxyuridine. Knudsen, T.B., Kochhar, D.M. Teratology (1981) [Pubmed]
  34. Palmar and plantar pads and flexion creases of genetic polydactyly mice (Pdn). Kimura, S., Naruse, I., Schaumann, B.A., Plato, C.C., Shimada, M., Shiota, K. J. Morphol. (1999) [Pubmed]
 
WikiGenes - Universities