The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Sox10  -  SRY (sex determining region Y)-box 10

Mus musculus

Synonyms: Dom, Protein SOX-21, Sox-10, Sox21, Transcription factor SOX-10, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Sox10

  • Fourth, mice that are double heterozygous for loss-of-function mutations in Sox10 and Ednrb do not demonstrate synergistically increased hypopigmentation compared to mice that are single heterozygotes for either mutation alone, suggesting a lack of direct genetic interaction between these genes [1].
  • Mice carrying heterozygous mutations in the Sox10 gene display aganglionosis of the colon and represent a model for human Hirschsprung disease [2].
  • WS and HSCR are associated in patients with Waardenburg-Shah syndrome (WS4), whose symptoms are reminiscent of the white coat-spotting and aganglionic megacolon displayed by the mouse mutants Dom (Dominant megacolon), piebald-lethal (sl) and lethal spotting (ls) [3].
  • The region containing this binding site was also occupied by endogenous Sox10 in 33B oligodendroglioma cells [4].
  • The transcription factor Sox10 is genetically linked with Waardenburg syndrome 4 (WS4) in humans and the Dominant megacolon (Dom) mouse model for this disease [5].

High impact information on Sox10


Biological context of Sox10


Anatomical context of Sox10


Associations of Sox10 with chemical compounds

  • MITF containing the double lysine-to-arginine substitution also shows enhanced cooperation with Sox10 on the Dct promoter [18].

Physical interactions of Sox10

  • Interestingly, the Sp- and Sox10-binding sites on the beta4 promoter are located immediately adjacent to each other, raising the possibility that the two sets of factors functionally interact to regulate receptor gene expression [19].

Regulatory relationships of Sox10

  • Moreover, coexpression of Olig2 with Nkx2.2 in the chick neural tube generated cells expressing Sox10, a marker of oligodendroglial precursors [20].
  • However, the overexpression of Slug was not able to upregulate Sox10 expression [21].
  • Our results show that Snail is able to control Sox10 expression [21].

Other interactions of Sox10

  • Moreover, we show that partial loss of Ednrb in Sox10 heterozygous mice impairs colonisation of the gut by enteric crest cells at all stages observed [14].
  • Differentiating enteric neurons showed high Ret, low p75, and undetectable Sox10 immunostaining [22].
  • Deletions encompassing the Oc 90 and Sox 10 loci were transmitted to the offspring of the chimeric mice that were generated from deletion-bearing ES cells [23].
  • Recent evidence suggests that the development of melanocyte stem cells is controlled by a complex network of transcription factors, including Pax3, Sox10, and Mitf, and of regulatory extracellular cues such as Wnt [24].
  • Here we show that, in addition to Sox10, cells of the oligodendrocyte lineage contain significant amounts of the related SRY box proteins Sox4 and Sox11 [25].
  • These results suggest that Sox10 is a membrane-associated factor whose transcriptional function is increased by direct interactions with ARMCX3 and raise the possibility of a signal transduction cascade between the nucleus and mitochondria through Sox10/ARMCX3 interactions [26].

Analytical, diagnostic and therapeutic context of Sox10


  1. Genetic evidence does not support direct regulation of EDNRB by SOX10 in migratory neural crest and the melanocyte lineage. Hakami, R.M., Hou, L., Baxter, L.L., Loftus, S.K., Southard-Smith, E.M., Incao, A., Cheng, J., Pavan, W.J. Mech. Dev. (2006) [Pubmed]
  2. Identification of Sox8 as a modifier gene in a mouse model of Hirschsprung disease reveals underlying molecular defect. Maka, M., Stolt, C.C., Wegner, M. Dev. Biol. (2005) [Pubmed]
  3. SOX10 mutations in patients with Waardenburg-Hirschsprung disease. Pingault, V., Bondurand, N., Kuhlbrodt, K., Goerich, D.E., Préhu, M.O., Puliti, A., Herbarth, B., Hermans-Borgmeyer, I., Legius, E., Matthijs, G., Amiel, J., Lyonnet, S., Ceccherini, I., Romeo, G., Smith, J.C., Read, A.P., Wegner, M., Goossens, M. Nat. Genet. (1998) [Pubmed]
  4. Expression of connexin47 in oligodendrocytes is regulated by the Sox10 transcription factor. Schlierf, B., Werner, T., Glaser, G., Wegner, M. J. Mol. Biol. (2006) [Pubmed]
  5. Direct regulation of the Microphthalmia promoter by Sox10 links Waardenburg-Shah syndrome (WS4)-associated hypopigmentation and deafness to WS2. Lee, M., Goodall, J., Verastegui, C., Ballotti, R., Goding, C.R. J. Biol. Chem. (2000) [Pubmed]
  6. Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model. Southard-Smith, E.M., Kos, L., Pavan, W.J. Nat. Genet. (1998) [Pubmed]
  7. The Sox9 transcription factor determines glial fate choice in the developing spinal cord. Stolt, C.C., Lommes, P., Sock, E., Chaboissier, M.C., Schedl, A., Wegner, M. Genes Dev. (2003) [Pubmed]
  8. Terminal differentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10. Stolt, C.C., Rehberg, S., Ader, M., Lommes, P., Riethmacher, D., Schachner, M., Bartsch, U., Wegner, M. Genes Dev. (2002) [Pubmed]
  9. Sox10 regulates ciliary neurotrophic factor gene expression in Schwann cells. Ito, Y., Wiese, S., Funk, N., Chittka, A., Rossoll, W., Bömmel, H., Watabe, K., Wegner, M., Sendtner, M. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  10. Melanocyte-specific expression of dopachrome tautomerase is dependent on synergistic gene activation by the Sox10 and Mitf transcription factors. Ludwig, A., Rehberg, S., Wegner, M. FEBS Lett. (2004) [Pubmed]
  11. Direct interaction of Sox10 with the promoter of murine Dopachrome Tautomerase (Dct) and synergistic activation of Dct expression with Mitf. Jiao, Z., Mollaaghababa, R., Pavan, W.J., Antonellis, A., Green, E.D., Hornyak, T.J. Pigment Cell Res. (2004) [Pubmed]
  12. Interspecies difference in the regulation of melanocyte development by SOX10 and MITF. Hou, L., Arnheiter, H., Pavan, W.J. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  13. Deletion of long-range sequences at Sox10 compromises developmental expression in a mouse model of Waardenburg-Shah (WS4) syndrome. Antonellis, A., Bennett, W.R., Menheniott, T.R., Prasad, A.B., Lee-Lin, S.Q., Green, E.D., Paisley, D., Kelsh, R.N., Pavan, W.J., Ward, A. Hum. Mol. Genet. (2006) [Pubmed]
  14. Interactions between Sox10, Edn3 and Ednrb during enteric nervous system and melanocyte development. Stanchina, L., Baral, V., Robert, F., Pingault, V., Lemort, N., Pachnis, V., Goossens, M., Bondurand, N. Dev. Biol. (2006) [Pubmed]
  15. Impact of transcription factor Sox8 on oligodendrocyte specification in the mouse embryonic spinal cord. Stolt, C.C., Schmitt, S., Lommes, P., Sock, E., Wegner, M. Dev. Biol. (2005) [Pubmed]
  16. Idiopathic weight reduction in mice deficient in the high-mobility-group transcription factor Sox8. Sock, E., Schmidt, K., Hermanns-Borgmeyer, I., Bösl, M.R., Wegner, M. Mol. Cell. Biol. (2001) [Pubmed]
  17. Activation of myelin genes during transdifferentiation from melanoma to glial cell phenotype. Slutsky, S.G., Kamaraju, A.K., Levy, A.M., Chebath, J., Revel, M. J. Biol. Chem. (2003) [Pubmed]
  18. Sumoylation modulates transcriptional activity of MITF in a promoter-specific manner. Murakami, H., Arnheiter, H. Pigment Cell Res. (2005) [Pubmed]
  19. Synergistic transcriptional activation by Sox10 and Sp1 family members. Melnikova, I.N., Lin, H.R., Blanchette, A.R., Gardner, P.D. Neuropharmacology (2000) [Pubmed]
  20. Olig bHLH proteins interact with homeodomain proteins to regulate cell fate acquisition in progenitors of the ventral neural tube. Sun, T., Echelard, Y., Lu, R., Yuk, D.I., Kaing, S., Stiles, C.D., Rowitch, D.H. Curr. Biol. (2001) [Pubmed]
  21. Sox10 is required for the early development of the prospective neural crest in Xenopus embryos. Honoré, S.M., Aybar, M.J., Mayor, R. Dev. Biol. (2003) [Pubmed]
  22. Acquisition of neuronal and glial markers by neural crest-derived cells in the mouse intestine. Young, H.M., Bergner, A.J., Müller, T. J. Comp. Neurol. (2003) [Pubmed]
  23. X-ray-induced deletion complexes in embryonic stem cells on mouse chromosome 15. Chick, W.S., Mentzer, S.E., Carpenter, D.A., Rinchik, E.M., Johnson, D., You, Y. Mamm. Genome (2005) [Pubmed]
  24. Checkpoints of melanocyte stem cell development. Sommer, L. Sci. STKE (2005) [Pubmed]
  25. Cooperative function of POU proteins and SOX proteins in glial cells. Kuhlbrodt, K., Herbarth, B., Sock, E., Enderich, J., Hermans-Borgmeyer, I., Wegner, M. J. Biol. Chem. (1998) [Pubmed]
  26. The armadillo repeat-containing protein, ARMCX3, physically and functionally interacts with the developmental regulatory factor Sox10. Mou, Z., Tapper, A.R., Gardner, P.D. J. Biol. Chem. (2009) [Pubmed]
  27. Sox10-rtTA mouse line for tetracycline-inducible expression of transgenes in neural crest cells and oligodendrocytes. Ludwig, A., Schlierf, B., Schardt, A., Nave, K.A., Wegner, M. Genesis (2004) [Pubmed]
  28. Expression of the Sox10 gene during mouse inner ear development. Watanabe, K., Takeda, K., Katori, Y., Ikeda, K., Oshima, T., Yasumoto, K., Saito, H., Takasaka, T., Shibahara, S. Brain Res. Mol. Brain Res. (2000) [Pubmed]
  29. Neuronal defects in genotyped dominant megacolon (Dom) mouse embryos, a model for Hirschsprung disease. Puliti, A., Poirier, V., Goossens, M., Simonneau, M. Neuroreport (1996) [Pubmed]
WikiGenes - Universities