The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Pax3  -  paired box 3

Mus musculus

Synonyms: Paired box protein Pax-3, Pax-3, Sp, splotch
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Pax3

 

High impact information on Pax3

 

Chemical compound and disease context of Pax3

 

Biological context of Pax3

 

Anatomical context of Pax3

 

Associations of Pax3 with chemical compounds

 

Physical interactions of Pax3

 

Regulatory relationships of Pax3

  • Pax3 protein and mRNA levels decline steadily after IL6RIL6 treatment, and overexpression of an ectopic Pax3 cDNA suppresses the Mitf promoter inhibition [2].
  • Pax3 may serve to negatively regulate versican expression during normal development, thereby guiding neural crest cells into their pathways of migration [22].
  • In that network, Pax3 gene is apparently activated through Dach/Eya/Six feedback loop to mediate MyoD-driven myogenesis [28].
  • Pax3 repressed a 1.3 kb MBP promoter fragment in cotransfection assays, suggesting that it represses MBP transcription [29].
  • Pax3 regulates morphogenetic cell behavior in vitro coincident with activation of a PCP/non-canonical Wnt-signaling cascade [30].
 

Other interactions of Pax3

  • Manipulation of the dominant-negative forms of these factors in satellite cell cultures demonstrates that Pax3 cannot replace the antiapoptotic function of Pax7 [19].
  • At Theiler stage 17 (day 10.5 post coitum) of development, strongly altered expression patterns of Pax3 and Myf5 were observed in dorsal somite regions indicating that the dorsal myotome and dermomyotome were not differentiating properly [31].
  • Lbx1 and Pax3 are co-expressed in all migrating hypaxial muscle precursors, raising the possibility that Lbx1 regulates their migration [32].
  • These results establish Msx2 as an effector of Pax3 in cardiac neural crest development [20].
  • Six1 and Six4 homeoproteins are required for Pax3 and Mrf expression during myogenesis in the mouse embryo [21].
 

Analytical, diagnostic and therapeutic context of Pax3

  • In this paper we demonstrate, using RT-PCR and in situ hybridisation, that Pax3 expression can serve as a marker of cardiac neural crest cells in the mouse embryo [33].
  • Confirmation that these Pax3-positive cells are indeed cardiac neural crest is provided by experiments in which hearts were deprived of a source of colonising neural crest, by organ culture in vitro, with consequent lack of up-regulation of Pax3 [33].
  • In an attempt to develop a sensitive animal model for maternal diabetes-induced NTDs, the present study uses chemically induced diabetes in an inbred mouse model with or without the splotch (Sp) mutation, a putatively nonfunctional allele of Pax3 [34].
  • To investigate the mechanism of these contrasting phenotypes, we replaced Pax3 by Pax7 by using gene targeting in the mouse [35].
  • In the present study, four discrete DNA elements within the 1.6 kbp promoter fragment are shown by electrophoretic mobility shift assays (EMSA) to exhibit sequence specific interactions with proteins present in nuclear extracts from P19 EC cells induced to express Pax3 by treatment with retinoic acid (RA) [36].

References

  1. Pax3:Fkhr interferes with embryonic Pax3 and Pax7 function: implications for alveolar rhabdomyosarcoma cell of origin. Keller, C., Hansen, M.S., Coffin, C.M., Capecchi, M.R. Genes Dev. (2004) [Pubmed]
  2. Pax3 down-regulation and shut-off of melanogenesis in melanoma B16/F10.9 by interleukin-6 receptor signaling. Kamaraju, A.K., Bertolotto, C., Chebath, J., Revel, M. J. Biol. Chem. (2002) [Pubmed]
  3. Pax: gene regulators in the developing nervous system. Chalepakis, G., Stoykova, A., Wijnholds, J., Tremblay, P., Gruss, P. J. Neurobiol. (1993) [Pubmed]
  4. Positive and negative DNA sequence elements are required to establish the pattern of Pax3 expression. Natoli, T.A., Ellsworth, M.K., Wu, C., Gross, K.W., Pruitt, S.C. Development (1997) [Pubmed]
  5. Development of a lethal congenital heart defect in the splotch (Pax3) mutant mouse. Conway, S.J., Henderson, D.J., Kirby, M.L., Anderson, R.H., Copp, A.J. Cardiovasc. Res. (1997) [Pubmed]
  6. Persistent expression of Pax3 in the neural crest causes cleft palate and defective osteogenesis in mice. Wu, M., Li, J., Engleka, K.A., Zhou, B., Lu, M.M., Plotkin, J.B., Epstein, J.A. J. Clin. Invest. (2008) [Pubmed]
  7. Early specification of limb muscle precursor cells by the homeobox gene Lbx1h. Schäfer, K., Braun, T. Nat. Genet. (1999) [Pubmed]
  8. HIRA, a mammalian homologue of Saccharomyces cerevisiae transcriptional co-repressors, interacts with Pax3. Magnaghi, P., Roberts, C., Lorain, S., Lipinski, M., Scambler, P.J. Nat. Genet. (1998) [Pubmed]
  9. Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and Myf-5 act upstream of MyoD. Tajbakhsh, S., Rocancourt, D., Cossu, G., Buckingham, M. Cell (1997) [Pubmed]
  10. Ectopic Pax-3 activates MyoD and Myf-5 expression in embryonic mesoderm and neural tissue. Maroto, M., Reshef, R., Münsterberg, A.E., Koester, S., Goulding, M., Lassar, A.B. Cell (1997) [Pubmed]
  11. Effect of arsenite, maternal age, and embryonic sex on spina bifida, exencephaly, and resorption rates in the splotch mouse. Martin, L.J., Machado, A.F., Loza, M.A., Mao, G.E., Lee, G.S., Hovland, D.N., Cantor, R.M., Collins, M.D. Birth defects research. Part A, Clinical and molecular teratology. (2003) [Pubmed]
  12. Neurofibromin deficiency in mice causes exencephaly and is a modifier for Splotch neural tube defects. Lakkis, M.M., Golden, J.A., O'Shea, K.S., Epstein, J.A. Dev. Biol. (1999) [Pubmed]
  13. Oxidant regulation of gene expression and neural tube development: Insights gained from diabetic pregnancy on molecular causes of neural tube defects. Chang, T.I., Horal, M., Jain, S.K., Wang, F., Patel, R., Loeken, M.R. Diabetologia (2003) [Pubmed]
  14. Reduction in the frequency of neural tube defects in splotch mice by retinoic acid. Kapron-Brás, C.M., Trasler, D.G. Teratology (1985) [Pubmed]
  15. The transcriptional activator PAX3-FKHR rescues the defects of Pax3 mutant mice but induces a myogenic gain-of-function phenotype with ligand-independent activation of Met signaling in vivo. Relaix, F., Polimeni, M., Rocancourt, D., Ponzetto, C., Schäfer, B.W., Buckingham, M. Genes Dev. (2003) [Pubmed]
  16. cDNA microarrays detect activation of a myogenic transcription program by the PAX3-FKHR fusion oncogene. Khan, J., Bittner, M.L., Saal, L.H., Teichmann, U., Azorsa, D.O., Gooden, G.C., Pavan, W.J., Trent, J.M., Meltzer, P.S. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  17. Pax3 functions in cell survival and in pax7 regulation. Borycki, A.G., Li, J., Jin, F., Emerson, C.P., Epstein, J.A. Development (1999) [Pubmed]
  18. The homeobox gene Msx1 is expressed in a subset of somites, and in muscle progenitor cells migrating into the forelimb. Houzelstein, D., Auda-Boucher, G., Chéraud, Y., Rouaud, T., Blanc, I., Tajbakhsh, S., Buckingham, M.E., Fontaine-Pérus, J., Robert, B. Development (1999) [Pubmed]
  19. Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. Relaix, F., Montarras, D., Zaffran, S., Gayraud-Morel, B., Rocancourt, D., Tajbakhsh, S., Mansouri, A., Cumano, A., Buckingham, M. J. Cell Biol. (2006) [Pubmed]
  20. Msx2 is an immediate downstream effector of Pax3 in the development of the murine cardiac neural crest. Kwang, S.J., Brugger, S.M., Lazik, A., Merrill, A.E., Wu, L.Y., Liu, Y.H., Ishii, M., Sangiorgi, F.O., Rauchman, M., Sucov, H.M., Maas, R.L., Maxson, R.E. Development (2002) [Pubmed]
  21. Six1 and Six4 homeoproteins are required for Pax3 and Mrf expression during myogenesis in the mouse embryo. Grifone, R., Demignon, J., Houbron, C., Souil, E., Niro, C., Seller, M.J., Hamard, G., Maire, P. Development (2005) [Pubmed]
  22. Over-expression of the chondroitin sulphate proteoglycan versican is associated with defective neural crest migration in the Pax3 mutant mouse (splotch). Henderson, D.J., Ybot-Gonzalez, P., Copp, A.J. Mech. Dev. (1997) [Pubmed]
  23. Expression of the met receptor tyrosine kinase in muscle progenitor cells in somites and limbs is absent in Splotch mice. Yang, X.M., Vogan, K., Gros, P., Park, M. Development (1996) [Pubmed]
  24. Mouse models for neural tube closure defects. Juriloff, D.M., Harris, M.J. Hum. Mol. Genet. (2000) [Pubmed]
  25. Cross-talk between the paired domain and the homeodomain of Pax3: DNA binding by each domain causes a structural change in the other domain, supporting interdependence for DNA Binding. Apuzzo, S., Abdelhakim, A., Fortin, A.S., Gros, P. J. Biol. Chem. (2004) [Pubmed]
  26. Site-specific modification of single cysteine Pax3 mutants reveals reciprocal regulation of DNA binding activity of the paired and homeo domain. Apuzzo, S., Gros, P. Biochemistry (2002) [Pubmed]
  27. The EF-hand calcium-binding protein calmyrin inhibits the transcriptional and DNA-binding activity of Pax3. Hollenbach, A.D., McPherson, C.J., Lagutina, I., Grosveld, G. Biochim. Biophys. Acta (2002) [Pubmed]
  28. MyoD-lacZ transgenes are early markers in the neural retina, but MyoD function appears to be inhibited in the developing retinal cells. Kablar, B. Int. J. Dev. Neurosci. (2004) [Pubmed]
  29. Pax3: a paired domain gene as a regulator in PNS myelination. Kioussi, C., Gross, M.K., Gruss, P. Neuron (1995) [Pubmed]
  30. Pax3 regulates morphogenetic cell behavior in vitro coincident with activation of a PCP/non-canonical Wnt-signaling cascade. Wiggan, O., Hamel, P.A. J. Cell. Sci. (2002) [Pubmed]
  31. Severe defects in the formation of epaxial musculature in open brain (opb) mutant mouse embryos. Spörle, R., Günther, T., Struwe, M., Schughart, K. Development (1996) [Pubmed]
  32. Lbx1 is required for muscle precursor migration along a lateral pathway into the limb. Gross, M.K., Moran-Rivard, L., Velasquez, T., Nakatsu, M.N., Jagla, K., Goulding, M. Development (2000) [Pubmed]
  33. Pax3 is required for cardiac neural crest migration in the mouse: evidence from the splotch (Sp2H) mutant. Conway, S.J., Henderson, D.J., Copp, A.J. Development (1997) [Pubmed]
  34. Diabetic embryopathy in C57BL/6J mice. Altered fetal sex ratio and impact of the splotch allele. Machado, A.F., Zimmerman, E.F., Hovland, D.N., Weiss, R., Collins, M.D. Diabetes (2001) [Pubmed]
  35. Divergent functions of murine Pax3 and Pax7 in limb muscle development. Relaix, F., Rocancourt, D., Mansouri, A., Buckingham, M. Genes Dev. (2004) [Pubmed]
  36. Hox/Pbx and Brn binding sites mediate Pax3 expression in vitro and in vivo. Pruitt, S.C., Bussman, A., Maslov, A.Y., Natoli, T.A., Heinaman, R. Gene Expr. Patterns (2004) [Pubmed]
 
WikiGenes - Universities