The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Neuroepithelial Cells

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Neuroepithelial Cells

  • In the embryonic mouse eye, we found that immunoreactivity for the axon guidance molecule netrin-1 was specifically on neuroepithelial cells at the disk surrounding exiting RGC axons, and RGC axons express the netrin receptor, DCC (deleted in colorectal cancer) [1].
  • To selectively identify and extract these cells, we infected dissociated fetal human brain cells with adenoviruses bearing the gene for green fluorescence protein (GFP), placed under the control of enhancer/promoters for two genes (nestin and musashi1) that are expressed in uncommitted neuroepithelial cells [2].
  • However, the increased urinary excretion of HIAA in patients with pulmonary hypertension indicates an increased turnover of 5HT, probably due to an increased number of intrapulmonary neuroepithelial cells or a higher metabolic rate of 5HT within those cells [3].
 

High impact information on Neuroepithelial Cells

  • Thus, alpha Snap is essential for apical protein localization and cell fate determination in neuroepithelial cells [4].
  • We propose that nok function in patterning of postmitotic neurons is mediated through neuroepithelial cells and is necessary for guiding neurons to their proper destinations in retinal laminae [5].
  • These results reveal a critical role for mammalian Lgl1 in regulating of proliferation, differentiation, and tissue organization and demonstrate a potential causative role of disruption of cell polarity in neoplastic transformation of neuroepithelial cells [6].
  • NUMB localizes in the basal cortex of mitotic avian neuroepithelial cells and modulates neuronal differentiation by binding to NOTCH-1 [7].
  • When exposed to platelet-derived growth factor (PDGF), uncommitted neuroepithelial cells from the developing cortex of embryonic day 14 (E14) rats develop into neurons [8].
 

Biological context of Neuroepithelial Cells

 

Anatomical context of Neuroepithelial Cells

 

Associations of Neuroepithelial Cells with chemical compounds

 

Gene context of Neuroepithelial Cells

 

Analytical, diagnostic and therapeutic context of Neuroepithelial Cells

References

  1. Netrin-1 and DCC mediate axon guidance locally at the optic disc: loss of function leads to optic nerve hypoplasia. Deiner, M.S., Kennedy, T.E., Fazeli, A., Serafini, T., Tessier-Lavigne, M., Sretavan, D.W. Neuron (1997) [Pubmed]
  2. High-yield selection and extraction of two promoter-defined phenotypes of neural stem cells from the fetal human brain. Keyoung, H.M., Roy, N.S., Benraiss, A., Louissaint, A., Suzuki, A., Hashimoto, M., Rashbaum, W.K., Okano, H., Goldman, S.A. Nat. Biotechnol. (2001) [Pubmed]
  3. Increased turnover of serotonin in children with pulmonary hypertension secondary to congenital heart disease. Breuer, J., Georgaraki, A., Sieverding, L., Baden, W., Apitz, J. Pediatric cardiology. (1996) [Pubmed]
  4. The hyh mutation uncovers roles for alpha Snap in apical protein localization and control of neural cell fate. Chae, T.H., Kim, S., Marz, K.E., Hanson, P.I., Walsh, C.A. Nat. Genet. (2004) [Pubmed]
  5. nagie oko, encoding a MAGUK-family protein, is essential for cellular patterning of the retina. Wei, X., Malicki, J. Nat. Genet. (2002) [Pubmed]
  6. Loss of cell polarity causes severe brain dysplasia in Lgl1 knockout mice. Klezovitch, O., Fernandez, T.E., Tapscott, S.J., Vasioukhin, V. Genes Dev. (2004) [Pubmed]
  7. NUMB localizes in the basal cortex of mitotic avian neuroepithelial cells and modulates neuronal differentiation by binding to NOTCH-1. Wakamatsu, Y., Maynard, T.M., Jones, S.U., Weston, J.A. Neuron (1999) [Pubmed]
  8. A PDGF-regulated immediate early gene response initiates neuronal differentiation in ventricular zone progenitor cells. Williams, B.P., Park, J.K., Alberta, J.A., Muhlebach, S.G., Hwang, G.Y., Roberts, T.M., Stiles, C.D. Neuron (1997) [Pubmed]
  9. Modulation of morphological differentiation of human neuroepithelial cells by serine proteases: independence from blood coagulation. Grand, R.J., Grabham, P.W., Gallimore, M.J., Gallimore, P.H. EMBO J. (1989) [Pubmed]
  10. Neural tube defects and neuroepithelial cell death in Tulp3 knockout mice. Ikeda, A., Ikeda, S., Gridley, T., Nishina, P.M., Naggert, J.K. Hum. Mol. Genet. (2001) [Pubmed]
  11. Megalin functions as an endocytic sonic hedgehog receptor. McCarthy, R.A., Barth, J.L., Chintalapudi, M.R., Knaak, C., Argraves, W.S. J. Biol. Chem. (2002) [Pubmed]
  12. Nestin is a neuroepithelial target gene of thyroid transcription factor-1, a homeoprotein required for forebrain organogenesis. Lonigro, R., Donnini, D., Zappia, E., Damante, G., Bianchi, M.E., Guazzi, S. J. Biol. Chem. (2001) [Pubmed]
  13. Interkinetic nuclear movement may provide spatial clues to the regulation of neurogenesis. Murciano, A., Zamora, J., López-Sánchez, J., Frade, J.M. Mol. Cell. Neurosci. (2002) [Pubmed]
  14. Neural tube expression of pituitary adenylate cyclase-activating peptide (PACAP) and receptor: potential role in patterning and neurogenesis. Waschek, J.A., Casillas, R.A., Nguyen, T.B., DiCicco-Bloom, E.M., Carpenter, E.M., Rodriguez, W.I. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  15. pp60c-src in the developing cerebellum. Fults, D.W., Towle, A.C., Lauder, J.M., Maness, P.F. Mol. Cell. Biol. (1985) [Pubmed]
  16. Developmental expression of mouse stromelysin-3 mRNA. Lefebvre, O., Régnier, C., Chenard, M.P., Wendling, C., Chambon, P., Basset, P., Rio, M.C. Development (1995) [Pubmed]
  17. Basic fibroblast growth factor promotes adhesive interactions of neuroepithelial cells from chick neural tube with extracellular matrix proteins in culture. Kinoshita, Y., Kinoshita, C., Heuer, J.G., Bothwell, M. Development (1993) [Pubmed]
  18. Neural crest emigration from the neural tube depends on regulated cadherin expression. Nakagawa, S., Takeichi, M. Development (1998) [Pubmed]
  19. Serotonin promotes the differentiation of glutamate neurons in organotypic slice cultures of the developing cerebral cortex. Lavdas, A.A., Blue, M.E., Lincoln, J., Parnavelas, J.G. J. Neurosci. (1997) [Pubmed]
  20. The effect of N-nitrosobis(2-hydroxypropyl)amine on pulmonary neuroepithelial cells in Syrian golden hamsters. Tateishi, R., Ishikawa, O. Am. J. Pathol. (1985) [Pubmed]
  21. Cyclic AMP-mediated upregulation of the expression of neuronal NO synthase in human A673 neuroepithelioma cells results in a decrease in the level of bioactive NO production: analysis of the signaling mechanisms that are involved. Boissel, J.P., Bros, M., Schröck, A., Gödtel-Armbrust, U., Förstermann, U. Biochemistry (2004) [Pubmed]
  22. A novel tetrodotoxin-resistant sodium current from an immortalized neuroepithelial cell line. Zhang, X., Phelan, K.D., Geller, H.M. J. Physiol. (Lond.) (1996) [Pubmed]
  23. Ethanol blocks cytosolic Ca2+ responses triggered by activation of GABA(A) receptor/Cl- channels in cultured proliferating rat neuroepithelial cells. Ma, W., Pancrazio, J.J., Andreadis, J.D., Shaffer, K.M., Stenger, D.A., Li, B.S., Zhang, L., Barker, J.L., Maric, D. Neuroscience (2001) [Pubmed]
  24. Loss of mitogen-activated protein kinase kinase kinase 4 (MEKK4) results in enhanced apoptosis and defective neural tube development. Chi, H., Sarkisian, M.R., Rakic, P., Flavell, R.A. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  25. Notch1 is required for neuronal and glial differentiation in the cerebellum. Lütolf, S., Radtke, F., Aguet, M., Suter, U., Taylor, V. Development (2002) [Pubmed]
  26. Identification of chaperonin CCT gamma subunit as a determinant of retinotectal development by whole-genome subtraction cloning from zebrafish no tectal neuron mutant. Matsuda, N., Mishina, M. Development (2004) [Pubmed]
  27. Direct binding of cell polarity protein PAR-3 to cell-cell adhesion molecule nectin at neuroepithelial cells of developing mouse. Takekuni, K., Ikeda, W., Fujito, T., Morimoto, K., Takeuchi, M., Monden, M., Takai, Y. J. Biol. Chem. (2003) [Pubmed]
  28. The LIM domain-only protein LMO4 is required for neural tube closure. Lee, S.K., Jurata, L.W., Nowak, R., Lettieri, K., Kenny, D.A., Pfaff, S.L., Gill, G.N. Mol. Cell. Neurosci. (2005) [Pubmed]
  29. Platelet-derived growth factor receptor-alpha in ventricular zone cells and in developing neurons. Andrae, J., Hansson, I., Afink, G.B., Nistér, M. Mol. Cell. Neurosci. (2001) [Pubmed]
  30. Functional SDF1 alpha/CXCR4 signaling in the developing spinal cord. Luo, Y., Cai, J., Xue, H., Miura, T., Rao, M.S. J. Neurochem. (2005) [Pubmed]
  31. Astrocyte differentiation of fetal neuroepithelial cells by interleukin-11 via activation of a common cytokine signal transducer, gp130, and a transcription factor, STAT3. Yanagisawa, M., Nakashima, K., Arakawa, H., Ikenaka, K., Yoshida, K., Kishimoto, T., Hisatsune, T., Taga, T. J. Neurochem. (2000) [Pubmed]
  32. Differential expression of neuron-glia cell adhesion molecule (Ng-CAM) on developing axons and growth cones of interneurons in the chick embryo spinal cord: an immunoelectron microscopic study. Shiga, T., Shirai, T., Grumet, M., Edelman, G.M., Oppenheim, R.W. J. Comp. Neurol. (1993) [Pubmed]
  33. Coexpression of nestin in neural and glial cells in the developing human CNS defined by a human-specific anti-nestin antibody. Messam, C.A., Hou, J., Major, E.O. Exp. Neurol. (2000) [Pubmed]
 
WikiGenes - Universities