The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

KRT1  -  keratin 1

Bos taurus

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of KRT1


Psychiatry related information on KRT1

  • At high temperatures (150 degrees C), 80% of feather keratin was solubilized within 25min, whereas a relatively longer reaction time (300min) is needed at moderate temperatures (100 degrees C) [6].

High impact information on KRT1


Chemical compound and disease context of KRT1

  • In rumen fluid, ammonia production from soluble keratin was similar to that of soybean and cottonseed meals and was greatly less than that of urea, indicating that no ammonia toxicity will result from cattle being fed soluble keratin [6].

Biological context of KRT1

  • Mapping of the intron positions by the S1 nuclease technique and sequencing of some exon-intron boundaries has revealed that some of the introns of all four keratin genes have similar positions to each other and to those of the hamster vimentin gene.(ABSTRACT TRUNCATED AT 250 WORDS)[10]
  • The gene coding for keratin VIb, a representative of the acidic (type I) subfamily, contains seven introns, and the size pattern of its five innermost exons closely resembles that of the genes of the type II keratins [10].
  • To delimit the regions containing these regulatory elements, different parts of the bovine keratin 6 gene linked to a beta-galactosidase reporter gene have been assayed in transgenic mice [11].
  • When the human 40-kDa keratin amino acid sequence is compared to the corresponding bovine keratin, the overall identity is 89% [12].
  • These data indicate that, as far as keratin synthesis is concerned, cultured urothelial cells undergo an altered pattern of differentiation towards a more 'stratified phenotype'; this unusual finding has interesting implications for urothelial evolution [13].

Anatomical context of KRT1


Associations of KRT1 with chemical compounds


Other interactions of KRT1


Analytical, diagnostic and therapeutic context of KRT1


  1. Effects of PBB on cattle. II. Gross pathology and histopathology. Moorhead, P.D., Willett, L.B., Schanbacher, F.L. Environ. Health Perspect. (1978) [Pubmed]
  2. Stomach cancer in transgenic mice expressing human papillomavirus type 16 early region genes from a keratin promoter. Searle, P.F., Thomas, D.P., Faulkner, K.B., Tinsley, J.M. J. Gen. Virol. (1994) [Pubmed]
  3. Effect of clinical and subclinical mastitis on lipid composition of teat canal keratin. Miller, R.H., Bitman, J., Bright, S.A., Wood, D.L., Capuco, A.V. J. Dairy Sci. (1992) [Pubmed]
  4. Histological response of the bovine mammary gland to intramammary devices. Nickerson, S.C., Washburn, P.J., Boddie, N.T. J. Dairy Sci. (1991) [Pubmed]
  5. Effect of reaming the papillary duct of cows' teats on keratin removal and penetrability of the duct to implanted Escherichia coli endotoxin. Schultze, W.D., Bramley, A.J. J. Dairy Res. (1985) [Pubmed]
  6. Lime treatment of keratinous materials for the generation of highly digestible animal feed: 1. Chicken feathers. Coward-Kelly, G., Chang, V.S., Agbogbo, F.K., Holtzapple, M.T. Bioresour. Technol. (2006) [Pubmed]
  7. Integration of different keratins into the same filament system after microinjection of mRNA for epidermal keratins into kidney epithelial cells. Franke, W.W., Schmid, E., Mittnacht, S., Grund, C., Jorcano, J.L. Cell (1984) [Pubmed]
  8. De novo synthesis and specific assembly of keratin filaments in nonepithelial cells after microinjection of mRNA for epidermal keratin. Kreis, T.E., Geiger, B., Schmid, E., Jorcano, J.L., Franke, W.W. Cell (1983) [Pubmed]
  9. Dynamics of keratin assembly: exogenous type I keratin rapidly associates with type II keratin in vivo. Miller, R.K., Khuon, S., Goldman, R.D. J. Cell Biol. (1993) [Pubmed]
  10. Characterization of bovine keratin genes: similarities of exon patterns in genes coding for different keratins. Lehnert, M.E., Jorcano, J.L., Zentgraf, H., Blessing, M., Franz, J.K., Franke, W.W. EMBO J. (1984) [Pubmed]
  11. A 5'-upstream region of a bovine keratin 6 gene confers tissue-specific expression and hyperproliferation-related induction in transgenic mice. Ramírez, A., Vidal, M., Bravo, A., Larcher, F., Jorcano, J.L. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  12. Sequence of the human 40-kDa keratin reveals an unusual structure with very high sequence identity to the corresponding bovine keratin. Eckert, R.L. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  13. Assessing the differentiation state of cultured bovine urothelial cells: elevated synthesis of stratification-related K5 and K6 keratins and persistent expression of uroplakin I. Surya, B., Yu, J., Manabe, M., Sun, T.T. J. Cell. Sci. (1990) [Pubmed]
  14. Intermediate filaments of baby hamster kidney (BHK-21) cells and bovine epidermal keratinocytes have similar ultrastructures and subunit domain structures. Steinert, P.M., Idler, W.W., Goldman, R.D. Proc. Natl. Acad. Sci. U.S.A. (1980) [Pubmed]
  15. Keratin intermediate filament dynamics in cell heterokaryons reveals diverse behaviour of different keratins. Paramio, J.M., Casanova, M.L., Alonso, A., Jorcano, J.L. J. Cell. Sci. (1997) [Pubmed]
  16. The role of the basement membrane in differential expression of keratin proteins in epithelial cells. Kurpakus, M.A., Stock, E.L., Jones, J.C. Dev. Biol. (1992) [Pubmed]
  17. Selective aggregation of proteoglycans with hyaluronic acid. Hoffman, P. J. Biol. Chem. (1979) [Pubmed]
  18. The distribution of mass in heteropolymer intermediate filaments assembled in vitro. Stem analysis of vimentin/desmin and bovine epidermal keratin. Steven, A.C., Hainfeld, J.F., Trus, B.L., Wall, J.S., Steinert, P.M. J. Biol. Chem. (1983) [Pubmed]
  19. Targeted expression of spermidine/spermine N1-acetyltransferase increases susceptibility to chemically induced skin carcinogenesis. Coleman, C.S., Pegg, A.E., Megosh, L.C., Guo, Y., Sawicki, J.A., O'Brien, T.G. Carcinogenesis (2002) [Pubmed]
  20. Alterations in skin and stratified epithelia by constitutively activated PPARalpha. Yang, Q., Yamada, A., Kimura, S., Peters, J.M., Gonzalez, F.J. J. Invest. Dermatol. (2006) [Pubmed]
  21. Fractionation of desmosomes and comparison of the polypeptide composition of desmosomes prepared from two bovine epithelial tissues. Jones, S.M., Jones, J.C., Goldman, R.D. J. Cell. Biochem. (1988) [Pubmed]
  22. A novel 58-kDa protein associates with the Golgi apparatus and microtubules. Bloom, G.S., Brashear, T.A. J. Biol. Chem. (1989) [Pubmed]
  23. Pattern of repeating aromatic residues in synexin. Similarity to the cytoplasmic domain of synaptophysin. Creutz, C.E., Snyder, S.L., Husted, L.D., Beggerly, L.K., Fox, J.W. Biochem. Biophys. Res. Commun. (1988) [Pubmed]
  24. Long-term organ culture of rabbit skin: effect of EGF on epidermal structure in vitro. Kondo, S., Hozumi, Y., Aso, K. J. Invest. Dermatol. (1990) [Pubmed]
  25. Phosphorylation modulates keratin structure. Yeagle, P.L., Frye, J., Eckert, B.S. Biochemistry (1990) [Pubmed]
  26. Protein synthesis in tissues cultured from the bovine hoof. Hendry, K.A., Lancelott, M.J., Knight, C.H., Kempson, S.A., Wilde, C.J. Cell Tissue Res. (1995) [Pubmed]
WikiGenes - Universities