The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

PFKL  -  phosphofructokinase, liver

Homo sapiens

Synonyms: 6-phosphofructokinase type B, ATP-PFK, ATP-dependent 6-phosphofructokinase, liver type, PFK-B, PFK-L, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of PFKL

  • The localization of PFKL to chromosome 21 and the chromatographic demonstration of a specific increase in the L subunit in red cells from trisomy 21 individuals has thus resolved the controversy about whether the previously observed elevation in PFK activity in Down syndrome represented a gene dosage effect [1].
  • RESULTS: Combining the results from these eight individuals suggests the candidate region for DS-CHD is demarcated by D21S3 (defined by ventricular septal defect), through PFKL (defined by tetralogy of Fallot) [2].
  • Significant allelic association (P = 0.02) between the disease mutation and PFKL was detected suggesting a founder effect in Mediterranean myoclonus [3].
  • 3. Using three highly polymorphic DNA markers (D21S212, PFKL, and D21S171) which flank the EPM1 locus, we performed linkage analysis to investigate whether or not the EPM1 gene is also implicated in Lafora disease [4].
  • The sequence/structure comparison of the protein with the crystal structure of a member of the PFK-B family, Escherichia coli ribokinase (EcRK), suggested that it might also form a stable and active dimer and revealed conservation of the ATP-binding site [5].
 

Psychiatry related information on PFKL

 

High impact information on PFKL

 

Chemical compound and disease context of PFKL

 

Biological context of PFKL

  • Comparison to publicly available genomic sequence, and additional data, revealed that the gene is split into seven exons over 10.5 kb, further refining the mapping position to only 1.2 kb distal to PFKL with the direction of transcription toward the centromere [12].
  • In addition, a cell line with a ring chromosome 21 containing a breakpoint which excluded the distal part of the q22.3 band was negative for expression of PFKL [13].
  • These results demonstrated that the isolated clones contain sequences homologous to human PFKL mRNA [14].
  • In vivo NMR measurements determined that cells overexpressing PFKL performed glycolysis 40% faster than controls [15].
  • These facts, together with abnormalities which occur in DS glycolysis, make PFKL overexpression a candidate for causing some aspects of the DS phenotype [15].
 

Anatomical context of PFKL

  • A cellular model for examining the consequences of PFKL overexpression in DS was constructed by transfecting rat PC12 cells with the human PFKL cDNA [15].
  • It was found that while relative amount of PFKL mRNA in adult brain was one-fourth of that detected in fetal brain the level of PFKM mRNA in adult brain was slightly higher than in fetal tissue, suggesting that PFK expression might be controlled at the transcriptional level [16].
  • The gene for the liver-type subunit of phosphofructokinase (PFKL), a key glycolytic enzyme, maps to this region and the product is overproduced in DS erythrocytes and fibroblasts [15].
  • The localization of aldolase (ALD) was also shifted towards the plasma membrane (and colocalized with PFK) in CAV-1 over-expressing cells [17].
  • We conclude that CAV-1 functions as a scaffolding protein for PFK, ALD and perhaps other glycolytic enzymes, either through direct interaction or accessory proteins, thus contributing to compartmented metabolism in vascular smooth muscle [17].
 

Associations of PFKL with chemical compounds

 

Other interactions of PFKL

 

Analytical, diagnostic and therapeutic context of PFKL

  • PCR amplification of DNA from somatic cell hybrids mapped D21S171 to human chromosome 21, and linkage analysis localized this marker close to the loci CD18, PFKL, D21S113 and D21S112 in chromosomal band 21q22 [26].
  • With PCR amplification, Southern blot analysis, and FISH, we have mapped this presumed human pericentrin gene (PCNT) to the long arm of chromosome 21 between marker PFKL and 21qter [27].
  • Confocal immunofluorescence microscopy was used to study the distribution of phosphofructokinase (PFK) and CAV-1 in the transfected cells [17].
  • Compared to the control group, the mouse in the group treated with the PO extracts by 1 g/d had significantly higher activities of PF, PFK, LDH and higher levels of ATP in the cortices, especially under the hypoxic environment for 24 hours [28].

References

  1. Isozymes of human phosphofructokinase: biochemical and genetic aspects. Vora, S. Isozymes Curr. Top. Biol. Med. Res. (1983) [Pubmed]
  2. Down syndrome congenital heart disease: a narrowed region and a candidate gene. Barlow, G.M., Chen, X.N., Shi, Z.Y., Lyons, G.E., Kurnit, D.M., Celle, L., Spinner, N.B., Zackai, E., Pettenati, M.J., Van Riper, A.J., Vekemans, M.J., Mjaatvedt, C.H., Korenberg, J.R. Genet. Med. (2001) [Pubmed]
  3. PME of Unverricht-Lundborg type in the Mediterranean region: linkage and linkage disequilibrium confirm the assignment to the EPM1 locus. Lehesjoki, A.E., Tassinari, C.A., Avanzini, G., Michelucci, R., Franceschetti, S., Antonelli, A., Rubboli, G., de la Chapelle, A. Hum. Genet. (1994) [Pubmed]
  4. Lafora disease is not linked to the Unverricht-Lundborg locus. Labauge, P., Beck, C., Bellet, H., Coquillat, G., Vespignani, H., Dulac, O., Gilgenkrantz, S., Dravet, C., Genton, P., Pellissier, J.F. Am. J. Med. Genet. (1995) [Pubmed]
  5. Characterization and molecular cloning of an adenosine kinase from Babesia canis rossi. Carret, C., Delbecq, S., Labesse, G., Carcy, B., Precigout, E., Moubri, K., Schetters, T.P., Gorenflot, A. Eur. J. Biochem. (1999) [Pubmed]
  6. A possible vulnerability locus for bipolar affective disorder on chromosome 21q22.3. Straub, R.E., Lehner, T., Luo, Y., Loth, J.E., Shao, W., Sharpe, L., Alexander, J.R., Das, K., Simon, R., Fieve, R.R. Nat. Genet. (1994) [Pubmed]
  7. A comprehensive linkage analysis of chromosome 21q22 supports prior evidence for a putative bipolar affective disorder locus. Aita, V.M., Liu, J., Knowles, J.A., Terwilliger, J.D., Baltazar, R., Grunn, A., Loth, J.E., Kanyas, K., Lerer, B., Endicott, J., Wang, Z., Penchaszadeh, G., Gilliam, T.C., Baron, M. Am. J. Hum. Genet. (1999) [Pubmed]
  8. Identification of mutations in cystatin B, the gene responsible for the Unverricht-Lundborg type of progressive myoclonus epilepsy (EPM1). Lalioti, M.D., Mirotsou, M., Buresi, C., Peitsch, M.C., Rossier, C., Ouazzani, R., Baldy-Moulinier, M., Bottani, A., Malafosse, A., Antonarakis, S.E. Am. J. Hum. Genet. (1997) [Pubmed]
  9. Assignment of the human gene for liver-type 6-phosphofructokinase isozyme (PFKL) to chromosome 21 by using somatic cell hybrids and monoclonal anti-L antibody. Vora, S., Francke, U. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  10. Unverricht-Lundborg disease: absence of nonallelic genetic heterogeneity. Cochius, J.I., Figlewicz, D.A., Kälviäinen, R., Nousiainen, U., Farrell, K., Patry, G., Söderfeldt, B., Frydman, M., Lerman, P., Andermann, F. Ann. Neurol. (1993) [Pubmed]
  11. Identification of a canine model of pyruvate dehydrogenase phosphatase 1 deficiency. Cameron, J.M., Maj, M.C., Levandovskiy, V., Mackay, N., Shelton, G.D., Robinson, B.H. Mol. Genet. Metab. (2007) [Pubmed]
  12. Characterization of a novel gene, C21orf2, on human chromosome 21q22.3 and its exclusion as the APECED gene by mutation analysis. Scott, H.S., Kyriakou, D.S., Peterson, P., Heino, M., Tähtinen, M., Krohn, K., Chen, H., Rossier, C., Lalioti, M.D., Antonarakis, S.E. Genomics (1998) [Pubmed]
  13. Regional assignment of human liver-type 6-phosphofructokinase to chromosome 21q22.3 by using somatic cell hybrids and a monoclonal anti-L antibody. Van Keuren, M., Drabkin, H., Hart, I., Harker, D., Patterson, D., Vora, S. Hum. Genet. (1986) [Pubmed]
  14. Genomic clones of the human liver-type phosphofructokinase. Levanon, D., Danciger, E., Dafni, N., Groner, Y. Biochem. Biophys. Res. Commun. (1986) [Pubmed]
  15. Gene dosage and Down's syndrome: metabolic and enzymatic changes in PC12 cells overexpressing transfected human liver-type phosphofructokinase. Elson, A., Bernstein, Y., Degani, H., Levanon, D., Ben-Hur, H., Groner, Y. Somat. Cell Mol. Genet. (1992) [Pubmed]
  16. The primary structure of human liver type phosphofructokinase and its comparison with other types of PFK. Levanon, D., Danciger, E., Dafni, N., Bernstein, Y., Elson, A., Moens, W., Brandeis, M., Groner, Y. DNA (1989) [Pubmed]
  17. Overexpression of caveolin-1 results in increased plasma membrane targeting of glycolytic enzymes: the structural basis for a membrane associated metabolic compartment. Raikar, L.S., Vallejo, J., Lloyd, P.G., Hardin, C.D. J. Cell. Biochem. (2006) [Pubmed]
  18. Mapping of glycolytic enzyme-binding sites on human erythrocyte band 3. Chu, H., Low, P.S. Biochem. J. (2006) [Pubmed]
  19. Oxidative stress reversibly inactivates myocardial enzymes during cardiac arrest. Sharma, A.B., Sun, J., Howard, L.L., Williams, A.G., Mallet, R.T. Am. J. Physiol. Heart Circ. Physiol. (2007) [Pubmed]
  20. Activity, distribution and regulation of phosphofructokinase in salivary gland of rats with streptozotocin-induced diabetes. Nicolau, J., Souza, D.N., Nogueira, F.N. Pesquisa odontológica brasileira = Brazilian oral research. (2006) [Pubmed]
  21. Genetic localization of Bethlem myopathy. Jobsis, G.J., Bolhuis, P.A., Boers, J.M., Baas, F., Wolterman, R.A., Hensels, G.W., de Visser, M. Neurology (1996) [Pubmed]
  22. Human chromosome 21q22.2-qter carries a gene(s) responsible for downregulation of mlc2a and PEBP in Down syndrome model mice. Kazuki, Y., Kimura, M., Nishigaki, R., Kai, Y., Abe, S., Okita, C., Shirayoshi, Y., Schulz, T.C., Tomizuka, K., Hanaoka, K., Inoue, T., Oshimura, M. Biochem. Biophys. Res. Commun. (2004) [Pubmed]
  23. SMT3A, a human homologue of the S. cerevisiae SMT3 gene, maps to chromosome 21qter and defines a novel gene family. Lapenta, V., Chiurazzi, P., van der Spek, P., Pizzuti, A., Hanaoka, F., Brahe, C. Genomics (1997) [Pubmed]
  24. Superoxide dismutase and glutathione peroxidase abnormalities in erythrocytes and lymphoid cells in Down syndrome. Frischer, H., Chu, L.K., Ahmad, T., Justice, P., Smith, G.F. Prog. Clin. Biol. Res. (1981) [Pubmed]
  25. Cloning the cDNA of human PWP2, which encodes a protein with WD repeats and maps to 21q22.3. Lalioti, M.D., Chen, H., Rossier, C., Shafaatian, R., Reid, J.D., Antonarakis, S.E. Genomics (1996) [Pubmed]
  26. Linkage mapping of D21S171 to the distal long arm of human chromosome 21 using a polymorphic (AC)n dinucleotide repeat. Petersen, M.B., Weber, J.L., Slaugenhaupt, S.A., Kwitek, A.E., McInnis, M.G., Chakravarti, A., Antonarakis, S.E. Hum. Genet. (1991) [Pubmed]
  27. Localization of a human homolog of the mouse pericentrin gene (PCNT) to chromosome 21qter. Chen, H., Gos, A., Morris, M.A., Antonarakis, S.E. Genomics (1996) [Pubmed]
  28. Protective effect of Portulaca oleracea extracts on hypoxic nerve tissue and its mechanism. Wang, W., Gu, L., Dong, L., Wang, X., Ling, C., Li, M. Asia Pacific journal of clinical nutrition (2007) [Pubmed]
 
WikiGenes - Universities