The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

AKAP9  -  A kinase (PRKA) anchor protein 9

Homo sapiens

Synonyms: A-kinase anchor protein 350 kDa, A-kinase anchor protein 450 kDa, A-kinase anchor protein 9, AKAP 120-like protein, AKAP 350, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of AKAP9


High impact information on AKAP9

  • By immunofluorecent labeling with specific antibodies it was demonstrated that AKAP450 localized to centrosomes [6].
  • Immunoprecipitation of RII from RIPA-buffer extracts of HeLa cells demonstrated co-precipitation of AKAP450 [6].
  • Sequence comparison demonstrated that the open reading frame contained a previously characterized cDNA encoding Yotiao, as well as the human homologue of AKAP120 [6].
  • These data reveal previously undescribed actions of Yotiao that occur subsequent to channel phosphorylation and provide evidence that this adaptor protein also may serve as an effector in regulating this important ion channel [7].
  • Eleven of the 64 SNPs mapped to genes encoding pivotal components of the growth hormone/insulin-like growth factor (GH-IGF) pathway, including CAMKK1 E375G (OR=1.37, P=5.4x10(-5)), AKAP9 M463I (OR=1.32, P=1.0x10(-4)) and GHR P495T (OR=12.98, P=0.0019) [8].

Biological context of AKAP9


Anatomical context of AKAP9


Associations of AKAP9 with chemical compounds

  • Thus yotiao is an NR1-binding protein potentially involved in cytoskeletal attachment of NMDA receptors [13].
  • AKAP350 and CLIC5B association with Golgi elements was lost following brefeldin A treatment [3].
  • In polarized Madin-Darby canine kidney cells, AKAP350 localized asymmetrically to one pole of the centrosome, and nocodazole did not alter its localization [10].
  • This included treatment of cells with cAMP analogs, inclusion of phosphatase inhibitors or purified PKA in the pipette filling solution, co-expression of catalytically active PKA, expression of the NR1 PKA-site phosphorylation site mimic (S897D) or by co-expression of the PKA scaffolding protein yotiao or the dopamine D(1) receptor [15].
  • RESULTS AND CONCLUSIONS: For target coverage, the volume receiving more than 95% of the prescribed dose ranged from 77% (OTP) to 91% (Eclipse and Pinnacle), the volume receiving more than 107% ranged from 3.3% (Hyperion) to 23.2% (OTP) [16].

Physical interactions of AKAP9


Co-localisations of AKAP9

  • CLIC4 is enriched at cell-cell junctions and colocalizes with AKAP350 at the centrosome and midbody of cultured mammalian cells [17].

Regulatory relationships of AKAP9


Other interactions of AKAP9


Analytical, diagnostic and therapeutic context of AKAP9


  1. Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. Ciampi, R., Knauf, J.A., Kerler, R., Gandhi, M., Zhu, Z., Nikiforova, M.N., Rabes, H.M., Fagin, J.A., Nikiforov, Y.E. J. Clin. Invest. (2005) [Pubmed]
  2. BRAF mutation and AKAP9 expression in sporadic papillary thyroid carcinomas. Lee, J.H., Lee, E.S., Kim, Y.S., Won, N.H., Chae, Y.S. Pathology. (2006) [Pubmed]
  3. AKAP350 at the Golgi apparatus. II. Association of AKAP350 with a novel chloride intracellular channel (CLIC) family member. Shanks, R.A., Larocca, M.C., Berryman, M., Edwards, J.C., Urushidani, T., Navarre, J., Goldenring, J.R. J. Biol. Chem. (2002) [Pubmed]
  4. Isolation and characterization of marine methanotrophs. Lidstrom, M.E. Antonie Van Leeuwenhoek (1988) [Pubmed]
  5. Hyperion laser thermokeratoplasty for hyperopia. Aker, A.B., Brown, D.C. International ophthalmology clinics. (2000) [Pubmed]
  6. Cloning and characterization of a cDNA encoding an A-kinase anchoring protein located in the centrosome, AKAP450. Witczak, O., Skålhegg, B.S., Keryer, G., Bornens, M., Taskén, K., Jahnsen, T., Orstavik, S. EMBO J. (1999) [Pubmed]
  7. Regulatory actions of the A-kinase anchoring protein Yotiao on a heart potassium channel downstream of PKA phosphorylation. Kurokawa, J., Motoike, H.K., Rao, J., Kass, R.S. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  8. Variants in the GH-IGF axis confer susceptibility to lung cancer. Rudd, M.F., Webb, E.L., Matakidou, A., Sellick, G.S., Williams, R.D., Bridle, H., Eisen, T., Houlston, R.S. Genome Res. (2006) [Pubmed]
  9. Dissociating the centrosomal matrix protein AKAP450 from centrioles impairs centriole duplication and cell cycle progression. Keryer, G., Witczak, O., Delouvée, A., Kemmner, W.A., Rouillard, D., Tasken, K., Bornens, M. Mol. Biol. Cell (2003) [Pubmed]
  10. AKAP350, a multiply spliced protein kinase A-anchoring protein associated with centrosomes. Schmidt, P.H., Dransfield, D.T., Claudio, J.O., Hawley, R.G., Trotter, K.W., Milgram, S.L., Goldenring, J.R. J. Biol. Chem. (1999) [Pubmed]
  11. Association of immature hypophosphorylated protein kinase cepsilon with an anchoring protein CG-NAP. Takahashi, M., Mukai, H., Oishi, K., Isagawa, T., Ono, Y. J. Biol. Chem. (2000) [Pubmed]
  12. Transforming acidic coiled-coil-containing protein 4 interacts with centrosomal AKAP350 and the mitotic spindle apparatus. Steadman, B.T., Schmidt, P.H., Shanks, R.A., Lapierre, L.A., Goldenring, J.R. J. Biol. Chem. (2002) [Pubmed]
  13. Yotiao, a novel protein of neuromuscular junction and brain that interacts with specific splice variants of NMDA receptor subunit NR1. Lin, J.W., Wyszynski, M., Madhavan, R., Sealock, R., Kim, J.U., Sheng, M. J. Neurosci. (1998) [Pubmed]
  14. Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring gamma-tubulin ring complex. Takahashi, M., Yamagiwa, A., Nishimura, T., Mukai, H., Ono, Y. Mol. Biol. Cell (2002) [Pubmed]
  15. Ethanol inhibition of NMDA receptors under conditions of altered protein kinase A activity. Xu, M., Woodward, J.J. J. Neurochem. (2006) [Pubmed]
  16. IMRT for breast. a planning study. Fogliata, A., Nicolini, G., Alber, M., Asell, M., Dobler, B., El-Haddad, M., Hårdemark, B., Jelen, U., Kania, A., Larsson, M., Lohr, F., Munger, T., Negri, E., Rodrigues, C., Cozzi, L. Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology. (2005) [Pubmed]
  17. CLIC4 is enriched at cell-cell junctions and colocalizes with AKAP350 at the centrosome and midbody of cultured mammalian cells. Berryman, M.A., Goldenring, J.R. Cell Motil. Cytoskeleton (2003) [Pubmed]
  18. Centrosome-targeting region of CG-NAP causes centrosome amplification by recruiting cyclin E-cdk2 complex. Nishimura, T., Takahashi, M., Kim, H.S., Mukai, H., Ono, Y. Genes Cells (2005) [Pubmed]
  19. AKAP350 modulates microtubule dynamics. Larocca, M.C., Jin, M., Goldenring, J.R. Eur. J. Cell Biol. (2006) [Pubmed]
  20. The scaffolding protein CG-NAP/AKAP450 is a critical integrating component of the LFA-1-induced signaling complex in migratory T cells. El Din El Homasany, B.S., Volkov, Y., Takahashi, M., Ono, Y., Keryer, G., Delouvée, A., Looby, E., Long, A., Kelleher, D. J. Immunol. (2005) [Pubmed]
WikiGenes - Universities