The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

TPD52L2  -  tumor protein D52-like 2

Homo sapiens

Synonyms: D54, TPD54, Tumor protein D52-like 2, Tumor protein D54, hD54
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of TPD52L2

 

High impact information on TPD52L2

 

Chemical compound and disease context of TPD52L2

 

Biological context of TPD52L2

  • Flow cytometric studies using D54 cells demonstrated no significant changes in the cell cycle distribution compared with untreated control, but a sub-G1 fraction consistent with apoptosis was detected [4].
  • D54 MG cells were transfected with AdCMVCEA or an adenoviral vector encoding lacZ reporter gene as a control (AdCMVlacZ) [14].
  • By using an in vitro assay of DNA fragmentation as a quantitative measure of apoptotic cell death, we sought to determine whether the sensitivity of two human glioma cell lines (D54 and U251) to drug-induced apoptosis could be inhibited by VN [15].
  • Using alanine substitution mutagenesis, we established a functional role for aspartates D54 and D213 in solCD39 [16].
 

Associations of TPD52L2 with chemical compounds

  • RESULTS: As single agents, ionizing radiation and ZD6474 caused a dose-dependent inhibition of soft agar growth in D54 and U251 cell lines, whereas a cooperative effect was obtained in combination [5].
  • Treatment of rats by ICM with temozolomide 3 days after intracerebral challenge with D54 human MG xenograft increased median survival by 128% compared with rats treated by ICM with saline, by 113% compared with rats treated with i.p. saline, and by 100% compared with rats treated with i.p. temozolomide (P < 0.001) [17].
  • GL261 and D54 cells were treated with 5 micromol/L of STI571 for 1 h and/or irradiated with 3 Gy [18].
  • In U87, D54, GL261, and C6 tumors, AdZ.F(pK7) increased gene transfer by 10- to 100-fold compared with AdZ [19].
 

Other interactions of TPD52L2

  • The identified hD54 cDNAs predicted three hD54 isoforms, suggesting that alternatively-spliced transcripts may be produced from D52-like genes [20].
 

Analytical, diagnostic and therapeutic context of TPD52L2

  • The efficacy of transduction of recombinant AdCMVCEA by direct intratumoral injection into D54 MG xenografts was investigated by immunohistochemical analysis, immunofluorescence and by measuring 131I-labeled COL-1 uptake through external scintigraphic imaging and biodistribution studies [14].
  • Immunofluorescence and immunohistochemistry assays employing unlabeled anti-CEA COL-1 monoclonal antibody demonstrated expression of CEA antigen on the cell surface of transduced D54 MG cells in culture [14].
  • The structure of the identical sequence determined at 120 K involving somewhat different crystallization conditions has been reported previously [Harper et al. (1998), Acta Cryst. D54, 1273-1284] [21].
  • HIV-1 gp120 binding proteins of the CD4-negative and Gal-C-negative, non-productively infectable human glioblastoma cell line D54 were purified by affinity chromatography over a gp120-conjugated sepharose column and identified by peptide microsequencing [22].
  • Importantly, direct intratumoral injection of Delta-24, but not RA55, significantly suppresses tumor growth in intracranial (U-87 MG, U-251 MG) or subcutaneous (D54 MG) animal models [23].

References

  1. The hD52 (TPD52) gene is a candidate target gene for events resulting in increased 8q21 copy number in human breast carcinoma. Balleine, R.L., Fejzo, M.S., Sathasivam, P., Basset, P., Clarke, C.L., Byrne, J.A. Genes Chromosomes Cancer (2000) [Pubmed]
  2. Inhibition of histone deacetylase increases cytotoxicity to anticancer drugs targeting DNA. Kim, M.S., Blake, M., Baek, J.H., Kohlhagen, G., Pommier, Y., Carrier, F. Cancer Res. (2003) [Pubmed]
  3. Adenovirus-mediated p16/CDKN2 gene transfer induces growth arrest and modifies the transformed phenotype of glioma cells. Fueyo, J., Gomez-Manzano, C., Yung, W.K., Clayman, G.L., Liu, T.J., Bruner, J., Levin, V.A., Kyritsis, A.P. Oncogene (1996) [Pubmed]
  4. Fenretinide activates caspases and induces apoptosis in gliomas. Puduvalli, V.K., Saito, Y., Xu, R., Kouraklis, G.P., Levin, V.A., Kyritsis, A.P. Clin. Cancer Res. (1999) [Pubmed]
  5. Cooperative antitumor effect of multitargeted kinase inhibitor ZD6474 and ionizing radiation in glioblastoma. Damiano, V., Melisi, D., Bianco, C., Raben, D., Caputo, R., Fontanini, G., Bianco, R., Ryan, A., Bianco, A.R., De Placido, S., Ciardiello, F., Tortora, G. Clin. Cancer Res. (2005) [Pubmed]
  6. Ionizing radiation-induced adenovirus infection is mediated by Dynamin 2. Qian, J., Yang, J., Dragovic, A.F., Abu-Isa, E., Lawrence, T.S., Zhang, M. Cancer Res. (2005) [Pubmed]
  7. Adenovirus-mediated transfer of the p53 gene produces rapid and generalized death of human glioma cells via apoptosis. Gomez-Manzano, C., Fueyo, J., Kyritsis, A.P., Steck, P.A., Roth, J.A., McDonnell, T.J., Steck, K.D., Levin, V.A., Yung, W.K. Cancer Res. (1996) [Pubmed]
  8. Noninvasive molecular imaging sheds light on the synergy between 5-fluorouracil and TRAIL/Apo2L for cancer therapy. Lee, K.C., Hamstra, D.A., Bhojani, M.S., Khan, A.P., Ross, B.D., Rehemtulla, A. Clin. Cancer Res. (2007) [Pubmed]
  9. Identification of a naturally occurring recombinant genotype 2/6 hepatitis C virus. Noppornpanth, S., Lien, T.X., Poovorawan, Y., Smits, S.L., Osterhaus, A.D., Haagmans, B.L. J. Virol. (2006) [Pubmed]
  10. Multiple levels of regulation of selenoprotein biosynthesis revealed from the analysis of human glioma cell lines. Mansur, D.B., Hao, H., Gladyshev, V.N., Korotkov, K.V., Hu, Y., Moustafa, M.E., El-Saadani, M.A., Carlson, B.A., Hatfield, D.L., Diamond, A.M. Biochem. Pharmacol. (2000) [Pubmed]
  11. Histone deacetylase inhibitors, N-butyric acid and trichostatin A, induce caspase-8- but not caspase-9-dependent apoptosis in human malignant glioma cells. Komata, T., Kanzawa, T., Nashimoto, T., Aoki, H., Endo, S., Kon, T., Takahashi, H., Kondo, S., Tanaka, R. Int. J. Oncol. (2005) [Pubmed]
  12. Transfection and dye premarking of human and rat glioma cell lines affects adhesion, migration and proliferation. Goldbrunner, R.H., Bouterfa, H., Vince, G.H., Bernstein, J.J., Roosen, K., Tonn, J.C. Anticancer Res. (1997) [Pubmed]
  13. Expression of matrix metalloproteinases in human glioma cell lines in the presence of IL-10. Wagner, S., Stegen, C., Bouterfa, H., Huettner, C., Kerkau, S., Roggendorf, W., Roosen, K., Tonn, J.C. J. Neurooncol. (1998) [Pubmed]
  14. Enhancement of radiolabeled antibody binding and tumor localization through adenoviral transduction of the human carcinoembryonic antigen gene. Raben, D., Buchsbaum, D.J., Khazaeli, M.B., Rosenfeld, M.E., Gillespie, G.Y., Grizzle, W.E., Liu, T., Curiel, D.T. Gene Ther. (1996) [Pubmed]
  15. Vitronectin, a glioma-derived extracellular matrix protein, protects tumor cells from apoptotic death. Uhm, J.H., Dooley, N.P., Kyritsis, A.P., Rao, J.S., Gladson, C.L. Clin. Cancer Res. (1999) [Pubmed]
  16. Roles of Asp54 and Asp213 in Ca2+ utilization by soluble human CD39/ecto-nucleotidase. Drosopoulos, J.H. Arch. Biochem. Biophys. (2002) [Pubmed]
  17. Temozolomide delivered by intracerebral microinfusion is safe and efficacious against malignant gliomas in rats. Heimberger, A.B., Archer, G.E., McLendon, R.E., Hulette, C., Friedman, A.H., Friedman, H.S., Bigner, D.D., Sampson, J.H. Clin. Cancer Res. (2000) [Pubmed]
  18. STI571 (Gleevec) improves tumor growth delay and survival in irradiated mouse models of glioblastoma. Geng, L., Shinohara, E.T., Kim, D., Tan, J., Osusky, K., Shyr, Y., Hallahan, D.E. Int. J. Radiat. Oncol. Biol. Phys. (2006) [Pubmed]
  19. Modifications of the fiber in adenovirus vectors increase tropism for malignant glioma models. Staba, M.J., Wickham, T.J., Kovesdi, I., Hallahan, D.E. Cancer Gene Ther. (2000) [Pubmed]
  20. Cloning of a third member of the D52 gene family indicates alternative coding sequence usage in D52-like transcripts. Nourse, C.R., Mattei, M.G., Gunning, P., Byrne, J.A. Biochim. Biophys. Acta (1998) [Pubmed]
  21. Structure of d(TGCGCA)2 at 293 K: comparison of the effects of sequence and temperature. Thiyagarajan, S., Satheesh Kumar, P., Rajan, S.S., Gautham, N. Acta Crystallogr. D Biol. Crystallogr. (2002) [Pubmed]
  22. Specific binding of HIV-1 envelope protein gp120 to the structural membrane proteins ezrin and moesin. Hecker, C., Weise, C., Schneider-Schaulies, J., Holmes, H.C., ter Meulen, V. Virus Res. (1997) [Pubmed]
  23. Comparative effect of oncolytic adenoviruses with E1A-55 kDa or E1B-55 kDa deletions in malignant gliomas. Jiang, H., Gomez-Manzano, C., Alemany, R., Medrano, D., Alonso, M., Bekele, B.N., Lin, E., Conrad, C.C., Yung, W.K., Fueyo, J. Neoplasia (2005) [Pubmed]
 
WikiGenes - Universities