The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

MET3  -  sulfate adenylyltransferase

Saccharomyces cerevisiae S288c

Synonyms: ATP-sulfurylase, J1436, Methionine-requiring protein 3, SAT, Sulfate adenylate transferase, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of MET3


High impact information on MET3


Biological context of MET3


Anatomical context of MET3


Associations of MET3 with chemical compounds

  • The beta-galactosidase activity driven by MET3 promoter was assayed in the absence of methionine and in the presence of different concentration of methionine in medium [12].
  • A number of genes have been implicated in the regulation of laccase and melanization, including IPC1, GPA1, MET3, and STE12 [13].
  • Partial repression of MET3p-OLE1 slightly lowered oleic acid levels and decreased membrane fluidity; these conditions permitted growth in the yeast form, but prevented hyphal development in aerobic conditions and blocked the formation of chlamydospores [7].
  • Sulfate assimilation in Aspergillus terreus: analysis of genes encoding ATP-sulfurylase and PAPS-reductase [14].
  • We used URA3 as a model to demonstrate that the MET3 promoter could control the expression of an essential gene, provided that a mixture of both methionine and cysteine was used to repress the promoter [15].

Regulatory relationships of MET3


Other interactions of MET3

  • In contrast, transcription of the MET3-URA3 fusion did not alter the Ty1 target-site distribution in wild-type or other mutant strains [18].
  • Three genes, MET3, MET14 and MET16, are essential for this reduction [19].
  • Both genes are similar to their homologs in A. nidulans (sA and sC), Penicillium chrysogenum (aps) and Saccharomyces cerevisiae (MET3 and MET16) [14].
  • To compare its activity with GAL1 promoter and the data reported by Mumburg about MET25 promoter, the MET3 promoter was a weak but tightly controlled promoter [12].
  • We have sequenced a 42,500 bp stretch located on chromosome X of Saccharomyces cerevisiae between the genes MET3 and CDC8 [20].

Analytical, diagnostic and therapeutic context of MET3


  1. Production, purification, and luminometric analysis of recombinant Saccharomyces cerevisiae MET3 adenosine triphosphate sulfurylase expressed in Escherichia coli. Karamohamed, S., Nilsson, J., Nourizad, K., Ronaghi, M., Pettersson, B., Nyrén, P. Protein Expr. Purif. (1999) [Pubmed]
  2. Crystal structure of a novel zinc-binding ATP sulfurylase from Thermus thermophilus HB8. Taguchi, Y., Sugishima, M., Fukuyama, K. Biochemistry (2004) [Pubmed]
  3. Crystal structure of ATP sulfurylase from Saccharomyces cerevisiae, a key enzyme in sulfate activation. Ullrich, T.C., Blaesse, M., Huber, R. EMBO J. (2001) [Pubmed]
  4. Molecular genetics of sulfur assimilation in filamentous fungi and yeast. Marzluf, G.A. Annu. Rev. Microbiol. (1997) [Pubmed]
  5. Cloning of a cDNA encoded by a member of the Arabidopsis thaliana ATP sulfurylase multigene family. Expression studies in yeast and in relation to plant sulfur nutrition. Logan, H.M., Cathala, N., Grignon, C., Davidian, J.C. J. Biol. Chem. (1996) [Pubmed]
  6. Regulation of inorganic sulfate activation in filamentous fungi. Allosteric inhibition of ATP sulfurylase by 3'-phosphoadenosine-5'-phosphosulfate. Renosto, F., Martin, R.L., Wailes, L.M., Daley, L.A., Segel, I.H. J. Biol. Chem. (1990) [Pubmed]
  7. Dosage-dependent functions of fatty acid desaturase Ole1p in growth and morphogenesis of Candida albicans. Krishnamurthy, S., Plaine, A., Albert, J., Prasad, T., Prasad, R., Ernst, J.F. Microbiology (Reading, Engl.) (2004) [Pubmed]
  8. A regulated MET3-GLC7 gene fusion provides evidence of a mitotic role for Saccharomyces cerevisiae protein phosphatase 1. Black, S., Andrews, P.D., Sneddon, A.A., Stark, M.J. Yeast (1995) [Pubmed]
  9. TDH2 is linked to MET3 on chromosome X of Saccharomyces cerevisiae. Mountain, H.A., Korch, C. Yeast (1991) [Pubmed]
  10. The Saccharomyces cerevisiae MET3 gene: nucleotide sequence and relationship of the 5' non-coding region to that of MET25. Cherest, H., Kerjan, P., Surdin-Kerjan, Y. Mol. Gen. Genet. (1987) [Pubmed]
  11. Functional characterization of a gene encoding a fourth ATP sulfurylase isoform from Arabidopsis thaliana. Hatzfeld, Y., Lee, S., Lee, M., Leustek, T., Saito, K. Gene (2000) [Pubmed]
  12. MET3 promoter: a tightly regulated promoter and its application in construction of conditional lethal strain. Mao, X., Hu, Y., Liang, C., Lu, C. Curr. Microbiol. (2002) [Pubmed]
  13. CNLAC1 is required for extrapulmonary dissemination of Cryptococcus neoformans but not pulmonary persistence. Noverr, M.C., Williamson, P.R., Fajardo, R.S., Huffnagle, G.B. Infect. Immun. (2004) [Pubmed]
  14. Sulfate assimilation in Aspergillus terreus: analysis of genes encoding ATP-sulfurylase and PAPS-reductase. Schierová, M., Linka, M., Pazoutová, S. Curr. Genet. (2000) [Pubmed]
  15. The MET3 promoter: a new tool for Candida albicans molecular genetics. Care, R.S., Trevethick, J., Binley, K.M., Sudbery, P.E. Mol. Microbiol. (1999) [Pubmed]
  16. The general amino acid control regulates MET4, which encodes a methionine-pathway-specific transcriptional activator of Saccharomyces cerevisiae. Mountain, H.A., Byström, A.S., Korch, C. Mol. Microbiol. (1993) [Pubmed]
  17. Glycosylation deficiency phenotypes resulting from depletion of GDP-mannose pyrophosphorylase in two yeast species. Warit, S., Zhang, N., Short, A., Walmsley, R.M., Oliver, S.G., Stateva, L.I. Mol. Microbiol. (2000) [Pubmed]
  18. Host genes that affect the target-site distribution of the yeast retrotransposon Ty1. Huang, H., Hong, J.Y., Burck, C.L., Liebman, S.W. Genetics (1999) [Pubmed]
  19. Increasing sulphite formation in Saccharomyces cerevisiae by overexpression of MET14 and SSU1. Donalies, U.E., Stahl, U. Yeast (2002) [Pubmed]
  20. Analysis of a 42.5 kb DNA sequence of chromosome X reveals three tRNA genes and 14 new open reading frames including a gene most probably belonging to the family of ubiquitin-protein ligases. Huang, M.E., Chuat, J.C., Galibert, F. Yeast (1995) [Pubmed]
  21. Soybean ATP sulfurylase, a homodimeric enzyme involved in sulfur assimilation, is abundantly expressed in roots and induced by cold treatment. Phartiyal, P., Kim, W.S., Cahoon, R.E., Jez, J.M., Krishnan, H.B. Arch. Biochem. Biophys. (2006) [Pubmed]
WikiGenes - Universities