The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

ompA  -  major outer membrane protein

Chlamydia trachomatis D/UW-3/CX

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of ompA

 

High impact information on ompA

 

Chemical compound and disease context of ompA

 

Biological context of ompA

  • Strains of Chlamydia trachomatis are classified into serovars based on nucleotide sequence differences in ompA, the gene that encodes the major outer membrane protein [2].
  • We found, however, no evidence of recombination within or between any of the sampled regions around the C. trachomatis genome apart from ompA [2].
  • Phylogenetic characterization of strains based on ompA, however, results in serovar groupings that are inconsistent with the distinguishing features of C. trachomatis pathobiology, e.g., tissue tropisms and disease presentation [2].
  • Furthermore, certain ompA genotype variants of the dominant serotypes were highly prevalent among MSM, and the reason for this is discussed [5].
  • While much of our knowledge about its genetic diversity comes from serotyping or ompA genotyping, no quantitative assessment of genetic diversity within serotypes has been performed [15].
 

Anatomical context of ompA

 

Associations of ompA with chemical compounds

  • In contrast, MAb reactive against non-immunoaccessible subspecies- or species-specific major outer membrane protein epitopes or against an immunoaccessible genus-specific epitope located on chlamydial lipopolysaccharide did not protect mice from toxic death or neutralize infectivity of the parasite for monkey eyes [21].
  • The major outer membrane protein of the L2 serovar is an acidic protein with a pI of ca. 5. It contains three cysteine residues that allow it to form a disulfide-linked proteinaceous network responsible for the characteristic rigid outer membrane of the elementary body [22].
  • This allows purification of the chlamydial major outer membrane protein at high yield in very gentle conditions by using its differential solubility in Sarkosyl and octylglucoside in the presence of dithiothreitol [22].
  • Immunoblotting and affinity chromatography indicated that MBP binds to the 40-kDa glycoprotein (the major outer membrane protein) on the outer surface of the chlamydial elementary body [23].
  • An unexpected finding was the apparent binding of anti-C3 antibody to a 40-kDa protein of the chlamydial outer membrane complex, perhaps indicating C3 mimicry on the part of the chlamydial major outer membrane protein [24].
 

Other interactions of ompA

 

Analytical, diagnostic and therapeutic context of ompA

  • In this study we aimed to characterize the ompA gene by sequencing DNA from all detected cases of Chlamydia trachomatis infection in a Swedish county during 2001, in order to improve the efficiency of contact tracing [26].
  • In purified DNA, specific pmp primers (named CpsiA and CpsiB) allowed at least a 10-fold increase of the PCR sensitivity compared to the specific ompA primers for C. abortus, but also for C. psittaci and C. caviae strains [27].
  • Analysis of persistently infected cells by immunofluorescent microscopy and immunoblotting with specific antibodies revealed that the atypical chlamydial forms had near-normal levels of the 60-kDa heat shock protein, an immunopathologic antigen, and a paucity of the major outer membrane protein, a protective antigen [28].
  • Epitope mapping with solid-phase peptides: identification of type-, subspecies-, species- and genus-reactive antibody binding domains on the major outer membrane protein of Chlamydia trachomatis [29].
  • Vaccination with the Chlamydia trachomatis major outer membrane protein can elicit an immune response as protective as that resulting from inoculation with live bacteria [30].

References

  1. Chlamydophila abortus pelvic inflammatory disease. Walder, G., Meusburger, H., Hotzel, H., Oehme, A., Neunteufel, W., Dierich, M.P., Würzner, R. Emerging Infect. Dis. (2003) [Pubmed]
  2. The ompA gene in Chlamydia trachomatis differs in phylogeny and rate of evolution from other regions of the genome. Brunelle, B.W., Sensabaugh, G.F. Infect. Immun. (2006) [Pubmed]
  3. Structures of and allelic diversity and relationships among the major outer membrane protein (ompA) genes of the four chlamydial species. Kaltenboeck, B., Kousoulas, K.G., Storz, J. J. Bacteriol. (1993) [Pubmed]
  4. Recombination in the ompA gene but not the omcB gene of Chlamydia contributes to serovar-specific differences in tissue tropism, immune surveillance, and persistence of the organism. Millman, K.L., Tavaré, S., Dean, D. J. Bacteriol. (2001) [Pubmed]
  5. Lymphogranuloma Venereum Prevalence in Sweden among Men Who Have Sex with Men and Characterization of Chlamydia trachomatis ompA Genotypes. Klint, M., L??fdahl, M., Ek, C., Airell, A., Berglund, T., Herrmann, B. J. Clin. Microbiol. (2006) [Pubmed]
  6. Epidemiologic and microbiologic correlates of Chlamydia trachomatis infection in sexual partnerships. Quinn, T.C., Gaydos, C., Shepherd, M., Bobo, L., Hook, E.W., Viscidi, R., Rompalo, A. JAMA (1996) [Pubmed]
  7. Immunogenicity of a chimeric peptide corresponding to T helper and B cell epitopes of the Chlamydia trachomatis major outer membrane protein. Su, H., Caldwell, H.D. J. Exp. Med. (1992) [Pubmed]
  8. Identification and characterization of T helper cell epitopes of the major outer membrane protein of Chlamydia trachomatis. Su, H., Morrison, R.P., Watkins, N.G., Caldwell, H.D. J. Exp. Med. (1990) [Pubmed]
  9. An N-linked high-mannose type oligosaccharide, expressed at the major outer membrane protein of Chlamydia trachomatis, mediates attachment and infectivity of the microorganism to HeLa cells. Kuo, C., Takahashi, N., Swanson, A.F., Ozeki, Y., Hakomori, S. J. Clin. Invest. (1996) [Pubmed]
  10. A recombinant Chlamydia trachomatis major outer membrane protein binds to heparan sulfate receptors on epithelial cells. Su, H., Raymond, L., Rockey, D.D., Fischer, E., Hackstadt, T., Caldwell, H.D. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  11. Immunoelectron microscopy of lipopolysaccharide in Chlamydia trachomatis. Birkelund, S., Lundemose, A.G., Christiansen, G. Infect. Immun. (1989) [Pubmed]
  12. Analysis of the humoral immune response to chlamydial genital infection in guinea pigs. Batteiger, B.E., Rank, R.G. Infect. Immun. (1987) [Pubmed]
  13. Evidence that the major outer membrane protein of Chlamydia trachomatis is glycosylated. Swanson, A.F., Kuo, C.C. Infect. Immun. (1991) [Pubmed]
  14. Binding of the glycan of the major outer membrane protein of Chlamydia trachomatis to HeLa cells. Swanson, A.F., Kuo, C.C. Infect. Immun. (1994) [Pubmed]
  15. Population-based genetic and evolutionary analysis of Chlamydia trachomatis urogenital strain variation in the United States. Millman, K., Black, C.M., Johnson, R.E., Stamm, W.E., Jones, R.B., Hook, E.W., Martin, D.H., Bolan, G., Tavaré, S., Dean, D. J. Bacteriol. (2004) [Pubmed]
  16. Epitope clusters in the major outer membrane protein of Chlamydia trachomatis. Kim, S.K., DeMars, R. Curr. Opin. Immunol. (2001) [Pubmed]
  17. Alteration of Chlamydia trachomatis biologic behavior in synovial membranes. Suppression of surface antigen production in reactive arthritis and Reiter's syndrome. Nanagara, R., Li, F., Beutler, A., Hudson, A., Schumacher, H.R. Arthritis Rheum. (1995) [Pubmed]
  18. Dendritic cells pulsed with a recombinant chlamydial major outer membrane protein antigen elicit a CD4(+) type 2 rather than type 1 immune response that is not protective. Shaw, J., Grund, V., Durling, L., Crane, D., Caldwell, H.D. Infect. Immun. (2002) [Pubmed]
  19. Antibody recognition of a neutralization epitope on the major outer membrane protein of Chlamydia trachomatis. Zhong, G., Berry, J., Brunham, R.C. Infect. Immun. (1994) [Pubmed]
  20. High-level expression of Chlamydia psittaci major outer membrane protein in COS cells and in skeletal muscles of turkeys. Vanrompay, D., Cox, E., Mast, J., Goddeeris, B., Volckaert, G. Infect. Immun. (1998) [Pubmed]
  21. Protective monoclonal antibodies recognize epitopes located on the major outer membrane protein of Chlamydia trachomatis. Zhang, Y.X., Stewart, S., Joseph, T., Taylor, H.R., Caldwell, H.D. J. Immunol. (1987) [Pubmed]
  22. Role of disulfide bonding in outer membrane structure and permeability in Chlamydia trachomatis. Bavoil, P., Ohlin, A., Schachter, J. Infect. Immun. (1984) [Pubmed]
  23. Human mannose-binding protein inhibits infection of HeLa cells by Chlamydia trachomatis. Swanson, A.F., Ezekowitz, R.A., Lee, A., Kuo, C.C. Infect. Immun. (1998) [Pubmed]
  24. Characterization of kinetics and target proteins for binding of human complement component C3 to the surface-exposed outer membrane of Chlamydia trachomatis serovar L2. Hall, R.T., Strugnell, T., Wu, X., Devine, D.V., Stiver, H.G. Infect. Immun. (1993) [Pubmed]
  25. High-resolution 31P nuclear magnetic resonance study of Chlamydia trachomatis: induction of ATPase activity in elementary bodies. Peeling, R.W., Peeling, J., Brunham, R.C. Infect. Immun. (1989) [Pubmed]
  26. Characterization of ompA genotypes by sequence analysis of DNA from all detected cases of Chlamydia trachomatis infections during 1 year of contact tracing in a Swedish County. Lysén, M., Osterlund, A., Rubin, C.J., Persson, T., Persson, I., Herrmann, B. J. Clin. Microbiol. (2004) [Pubmed]
  27. Improved sensitivity of PCR for Chlamydophila using pmp genes. Laroucau, K., Souriau, A., Rodolakis, A. Vet. Microbiol. (2001) [Pubmed]
  28. Morphologic and antigenic characterization of interferon gamma-mediated persistent Chlamydia trachomatis infection in vitro. Beatty, W.L., Byrne, G.I., Morrison, R.P. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  29. Epitope mapping with solid-phase peptides: identification of type-, subspecies-, species- and genus-reactive antibody binding domains on the major outer membrane protein of Chlamydia trachomatis. Conlan, J.W., Clarke, I.N., Ward, M.E. Mol. Microbiol. (1988) [Pubmed]
  30. Vaccination with the Chlamydia trachomatis major outer membrane protein can elicit an immune response as protective as that resulting from inoculation with live bacteria. Pal, S., Peterson, E.M., de la Maza, L.M. Infect. Immun. (2005) [Pubmed]
 
WikiGenes - Universities