The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Trachoma


High impact information on Trachoma

  • The chlamydial major outer membrane protein (MOMP) is thought to play an important role in the development of protective immunity against chlamydial infection, and is therefore considered to be a promising candidate antigen in the development of a trachoma vaccine [6].
  • Thus, the Th cell epitopes contained within these peptides, in combination with different trachoma serovar-specific B cell neutralizing determinants, may be useful in the development of a synthetic or recombinant trivalent trachoma vaccine [6].
  • Both vitamin A deficiency and trachoma are important causes of preventable ocular diseases [7].
  • We assessed the potential of community-wide azithromycin treatment for trachoma control [8].
  • Programmes to prevent blindness due to trachoma are based on community-wide treatment with topical tetracycline [8].

Chemical compound and disease context of Trachoma

  • The currently recommended treatment of active trachoma with repeated doses of tetracycline eye ointment has many disadvantages [1].
  • We carried out a randomised single-blind comparison of azithromycin (a single oral dose of 20 mg/kg) with conventional treatment (6 weeks of topical tetracycline plus erythromycin for severe cases) in two villages with endemic trachoma in The Gambia [1].
  • Deltamethrin spray is effective for fly control and may be useful for reducing trachoma and diarrhoea in some situations, but further research on sustainable fly-control methods is needed [9].
  • We demonstrated that the trachoma and LGV biovars compete for the same receptor(s) on host cells and that their infectivity was inhibited by heparin or heparan sulphate [10].
  • In contrast, MAb L2-15k, which recognized an epitope located on the 15-kDa protein of the LGV-434 strain, reacted with the 15- and 14-kDa, cysteine-rich proteins of both LGV and trachoma biovar strains, but did not react with related proteins of two Chlamydia psittaci strains [11].

Biological context of Trachoma


Anatomical context of Trachoma


Gene context of Trachoma

  • In addition, quantitative zymography was used to compare the activity of gelatinase B in conjunctival biopsy specimens from seven patients with active trachoma and seven control subjects [20].
  • Relationship between Tear TNF-alpha, TGF-beta1, and EGF levels and severity of conjunctival cicatrization in patients with inactive trachoma [21].
  • One cluster included all Chlamydia trachomatis ompA alleles (trachoma group) [22].
  • Cytoplasmic IL-1 alpha and IL-1 beta expression was noted in the conjunctival epithelium in all trachoma specimens [23].
  • Tear tumor necrosis factor alpha (TNF-alpha), transforming growth factor beta 1 (TGF-beta1), and epidermal growth factor (EGF) levels were determined in patients with inactive trachoma, and a possible relation between these cytokines and conjunctival cicatrization severity was investigated [21].

Analytical, diagnostic and therapeutic context of Trachoma


  1. Randomised controlled trial of single-dose azithromycin in treatment of trachoma. Bailey, R.L., Arullendran, P., Whittle, H.C., Mabey, D.C. Lancet (1993) [Pubmed]
  2. Chlamydia trachomatis species-specific epitope detected on mouse biovar outer membrane protein. Stephens, R.S., Kuo, C.C. Infect. Immun. (1984) [Pubmed]
  3. Does the diagnosis of trachoma adequately identify ocular chlamydial infection in trachoma-endemic areas? Bird, M., Dawson, C.R., Schachter, J.S., Miao, Y., Shama, A., Osman, A., Bassem, A., Lietman, T.M. J. Infect. Dis. (2003) [Pubmed]
  4. Polymorphisms in the Chlamydia trachomatis cytotoxin locus associated with ocular and genital isolates. Carlson, J.H., Hughes, S., Hogan, D., Cieplak, G., Sturdevant, D.E., McClarty, G., Caldwell, H.D., Belland, R.J. Infect. Immun. (2004) [Pubmed]
  5. Impact of community-based azithromycin treatment of trachoma on carriage and resistance of Streptococcus pneumoniae. Peterson, J., Treadway, G. Clin. Infect. Dis. (1998) [Pubmed]
  6. Identification and characterization of T helper cell epitopes of the major outer membrane protein of Chlamydia trachomatis. Su, H., Morrison, R.P., Watkins, N.G., Caldwell, H.D. J. Exp. Med. (1990) [Pubmed]
  7. Trachoma and vitamin A deficiency. Schémann, J., Malvy, D., Sacko, D., Traore, L. Lancet (2001) [Pubmed]
  8. Azithromycin in control of trachoma. Schachter, J., West, S.K., Mabey, D., Dawson, C.R., Bobo, L., Bailey, R., Vitale, S., Quinn, T.C., Sheta, A., Sallam, S., Mkocha, H., Mabey, D., Faal, H. Lancet (1999) [Pubmed]
  9. Effect of fly control on trachoma and diarrhoea. Emerson, P.M., Lindsay, S.W., Walraven, G.E., Faal, H., Bøgh, C., Lowe, K., Bailey, R.L. Lancet (1999) [Pubmed]
  10. Trachoma and LGV biovars of Chlamydia trachomatis share the same glycosaminoglycan-dependent mechanism for infection of eukaryotic cells. Chen, J.C., Stephens, R.S. Mol. Microbiol. (1994) [Pubmed]
  11. The low-molecular-mass, cysteine-rich outer membrane protein of Chlamydia trachomatis possesses both biovar- and species-specific epitopes. Zhang, Y.X., Watkins, N.G., Stewart, S., Caldwell, H.D. Infect. Immun. (1987) [Pubmed]
  12. Immune response to chlamydial 60-kilodalton heat shock protein in tears from Nepali trachoma patients. Hessel, T., Dhital, S.P., Plank, R., Dean, D. Infect. Immun. (2001) [Pubmed]
  13. Pharmacokinetics of azithromycin in trachoma patients: serum and tear levels. Karcioglu, Z.A., El-Yazigi, A., Jabak, M.H., Choudhury, A.H., Ahmed, W.S. Ophthalmology (1998) [Pubmed]
  14. Chlamydia trachomatis glycosaminoglycan-dependent and independent attachment to eukaryotic cells. Chen, J.C., Stephens, R.S. Microb. Pathog. (1997) [Pubmed]
  15. Blindness and eye diseases in Tibet: findings from a randomised, population based survey. Dunzhu, S., Wang, F.S., Courtright, P., Liu, L., Tenzing, C., Noertjojo, K., Wilkie, A., Santangelo, M., Bassett, K.L. The British journal of ophthalmology. (2003) [Pubmed]
  16. Epidemiology of trachoma in the West Bank and Gaza Strip. Chumbley, L.C., Thomson, I.M. Eye (London, England) (1988) [Pubmed]
  17. Factors affecting the rate as which a trachoma strain of Chlamydia trachomatis establishes persistent infections in mouse fibroblasts (McCoy cells). Lee, C.K. Infect. Immun. (1981) [Pubmed]
  18. Characterization of B-cell responses to Chlamydia trachomatis antigens in humans with trachoma. Ghaem-Maghami, S., Bailey, R.L., Mabey, D.C., Hay, P.E., Mahdi, O.S., Joof, H.M., Whittle, H.C., Ward, M.E., Lewis, D.J. Infect. Immun. (1997) [Pubmed]
  19. Expression of MHC class II antigens by conjunctival epithelial cells in trachoma: implications concerning the pathogenesis of blinding disease. Mabey, D.C., Bailey, R.L., Dunn, D., Jones, D., Williams, J.H., Whittle, H.C., Ward, M.E. J. Clin. Pathol. (1991) [Pubmed]
  20. Expression of gelatinase B in trachomatous conjunctivitis. El-Asrar, A.M., Geboes, K., Al-Kharashi, S.A., Al-Mosallam, A.A., Missotten, L., Paemen, L., Opdenakker, G. The British journal of ophthalmology. (2000) [Pubmed]
  21. Relationship between Tear TNF-alpha, TGF-beta1, and EGF levels and severity of conjunctival cicatrization in patients with inactive trachoma. Satici, A., Guzey, M., Dogan, Z., Kilic, A. Ophthalmic Res. (2003) [Pubmed]
  22. Structures of and allelic diversity and relationships among the major outer membrane protein (ompA) genes of the four chlamydial species. Kaltenboeck, B., Kousoulas, K.G., Storz, J. J. Bacteriol. (1993) [Pubmed]
  23. Immunopathogenesis of conjunctival scarring in trachoma. Abu el-Asrar, A.M., Geboes, K., Tabbara, K.F., al-Kharashi, S.A., Missotten, L., Desmet, V. Eye (London, England) (1998) [Pubmed]
  24. Genotyping of Chlamydia trachomatis from a trachoma-endemic village in the Gambia by a nested polymerase chain reaction: identification of strain variants. Hayes, L.J., Bailey, R.L., Mabey, D.C., Clarke, I.N., Pickett, M.A., Watt, P.J., Ward, M.E. J. Infect. Dis. (1992) [Pubmed]
  25. Family-based suppressive intermittent therapy of hyperendemic trachoma with topical oxytetracycline or oral doxycycline. Darougar, S., Jones, B.R., Viswalingam, N., Poirier, R.H., Allami, J., Houshmand, A., Farahmandian, M.A., Gibson, J.A. The British journal of ophthalmology. (1980) [Pubmed]
  26. Topical tetracycline and rifampicin therapy of endemic trachoma in Tunisia. Dawson, C.R., Hoshiwara, I., Daghfous, T., Messadi, M., Vastine, D.W., Schachter, J. Am. J. Ophthalmol. (1975) [Pubmed]
WikiGenes - Universities