The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Tropism


Psychiatry related information on Tropism

  • To investigate the contribution of IFN to MV tropism in nonleporine cells, primary human dermal fibroblasts (HDFs) were tested for permissiveness to MV infection [6].
  • To establish the in vivo cellular tropism of human T-cell leukemia virus type II (HTLV-II) in peripheral blood, subpopulations of mononuclear cells isolated from patients with a history of drug abuse and with high proviral load were analyzed by polymerase chain reaction for the presence of the proviral sequences [7].

High impact information on Tropism

  • Our results indicate a novel role for the G domain of LN-2 in infection and reveal a model in which a host-derived bridging molecule determines nerve tropism of a pathogen [8].
  • The tropism of AAV-5 in vivo also correlated with the expression pattern of PDGFR-alpha [9].
  • Polar transport of the phytohormone auxin mediates various processes in plant growth and development, such as apical dominance, tropisms, vascular patterning and axis formation [10].
  • The tropism of AAV2 might be changed by genetically introducing a ligand peptide into the viral capsid, thereby redirecting the binding of AAV2 to other cellular receptors [11].
  • Heparan sulfate and viral tropism [12].

Chemical compound and disease context of Tropism


Biological context of Tropism

  • We propose that at least one determinant for mononuclear phagocyte tropism involves target cell interactions with regions of gp120 distinct from the CD4-binding domain [18].
  • Here, we studied evolution of tropism for CD45RA(+) and CD45RO(+) CD4(+) cells, coreceptor usage, and molecular phylogeny of coexisting NSI and SI HIV-1 clones that were isolated from four patients in the period spanning SI conversion [19].
  • The keratinocyte-dependent enhancer is likely to contribute to the epithelial cell tropism of HPV-16, and may direct persistent E6-E7 gene transcription in response to cellular factors in cervical carcinoma cells in which the viral E2 genes are inactive [20].
  • Prior studies have determined that the localization of virus in different cell types in the brain (tropism) is a property of the viral hemagglutinin, the product of the S1 RNA genome segment [21].
  • We conclude that the intrinsic fusion selectivity of env plays a major role in the tropism of a HIV-1 isolate for infection of CD4+ T-cell lines vs. primary macrophages, presumably by determining the selectivity of virus entry and cell fusion [22].

Anatomical context of Tropism


Associations of Tropism with chemical compounds

  • Disease tropism of c-erbB: effects of carboxyl-terminal tyrosine and internal mutations on tissue-specific transformation [28].
  • JCV has a restricted cell tropism that is caused partly by the initial interaction between the virus and sialic acid-containing host cell receptors [29].
  • Interestingly, the differential expression of the C1 factors in both human and mouse tissues may be important for the determination of HSV tissue tropism in these two organisms [30].
  • Role for a secreted cysteine proteinase in the establishment of host tissue tropism by group A streptococci [31].
  • The need for additional transforming events, suggested by the low incidence of spontaneous tumors, was further indicated by the high susceptibility of the transgenic animals to injections of low doses of N-methyl-N-nitrosourea, a chemical carcinogen with a thymic tropism [32].

Gene context of Tropism

  • Our results suggest that structural features of the HIV-1 envelope linked to CCR5 tropism could confer a selective advantage in vivo [33].
  • We propose that dual tropism may evolve in CCR5-restricted HIV-1 strains through acquisition of the ability to utilize the first and second extracellular loops of CXCR4 while retaining the ability to interact with the CCR5 amino-terminal domain [34].
  • We hypothesized that H. pylori interacting with TFF1 could explain the tropism of this bacteria for gastric tissue [35].
  • The highly conserved nature of EFNB2 in humans and animals is consistent with the broad tropism exhibited by these emerging zoonotic viruses [36].
  • Human immunodeficiency virus, type I (HIV-1) cell-type tropism is dictated by chemokine receptor usage: T-cell line tropic viruses use CXCR4, whereas monocyte tropic viruses primarily use CCR5 as fusion coreceptors [37].

Analytical, diagnostic and therapeutic context of Tropism


  1. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Berger, E.A., Murphy, P.M., Farber, J.M. Annu. Rev. Immunol. (1999) [Pubmed]
  2. Core structure of gp41 from the HIV envelope glycoprotein. Chan, D.C., Fass, D., Berger, J.M., Kim, P.S. Cell (1997) [Pubmed]
  3. Binding of HTLV-III/LAV to T4+ T cells by a complex of the 110K viral protein and the T4 molecule. McDougal, J.S., Kennedy, M.S., Sligh, J.M., Cort, S.P., Mawle, A., Nicholson, J.K. Science (1986) [Pubmed]
  4. In vivo cellular tropism of human T cell leukemia virus type II (HTLV-II). Ijichi, S., Ramundo, M.B., Takahashi, H., Hall, W.W. J. Exp. Med. (1992) [Pubmed]
  5. Development of experimental model of chronic pyelonephritis with Escherichia coli O75:K5:H-bearing Dr fimbriae: mutation in the dra region prevented tubulointerstitial nephritis. Goluszko, P., Moseley, S.L., Truong, L.D., Kaul, A., Williford, J.R., Selvarangan, R., Nowicki, S., Nowicki, B. J. Clin. Invest. (1997) [Pubmed]
  6. Myxoma virus infection of primary human fibroblasts varies with cellular age and is regulated by host interferon responses. Johnston, J.B., Nazarian, S.H., Natale, R., McFadden, G. Virology (2005) [Pubmed]
  7. Cellular tropism of human T-cell leukemia virus type II is enlarged to B lymphocytes in patients with high proviral load. Casoli, C., Cimarelli, A., Bertazzoni, U. Virology (1995) [Pubmed]
  8. Neural targeting of Mycobacterium leprae mediated by the G domain of the laminin-alpha2 chain. Rambukkana, A., Salzer, J.L., Yurchenco, P.D., Tuomanen, E.I. Cell (1997) [Pubmed]
  9. Identification of PDGFR as a receptor for AAV-5 transduction. Di Pasquale, G., Davidson, B.L., Stein, C.S., Martins, I., Scudiero, D., Monks, A., Chiorini, J.A. Nat. Med. (2003) [Pubmed]
  10. Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Geldner, N., Friml, J., Stierhof, Y.D., Jürgens, G., Palme, K. Nature (2001) [Pubmed]
  11. Genetic capsid modifications allow efficient re-targeting of adeno-associated virus type 2. Girod, A., Ried, M., Wobus, C., Lahm, H., Leike, K., Kleinschmidt, J., Deléage, G., Hallek, M. Nat. Med. (1999) [Pubmed]
  12. Heparan sulfate and viral tropism. Bergström, T., Trybala, E., Spillmann, D. Nat. Med. (1997) [Pubmed]
  13. Potential of the conditionally replicative adenovirus Ad5-Delta24RGD in the treatment of malignant gliomas and its enhanced effect with radiotherapy. Lamfers, M.L., Grill, J., Dirven, C.M., Van Beusechem, V.W., Geoerger, B., Van Den Berg, J., Alemany, R., Fueyo, J., Curiel, D.T., Vassal, G., Pinedo, H.M., Vandertop, W.P., Gerritsen, W.R. Cancer Res. (2002) [Pubmed]
  14. Molecular basis defining human Chlamydia trachomatis tissue tropism. A possible role for tryptophan synthase. Fehlner-Gardiner, C., Roshick, C., Carlson, J.H., Hughes, S., Belland, R.J., Caldwell, H.D., McClarty, G. J. Biol. Chem. (2002) [Pubmed]
  15. Effect of adenovirus serotype 5 fiber and penton modifications on in vivo tropism in rats. Nicol, C.G., Graham, D., Miller, W.H., White, S.J., Smith, T.A., Nicklin, S.A., Stevenson, S.C., Baker, A.H. Mol. Ther. (2004) [Pubmed]
  16. Conditionally replicative adenovirus with tropism expanded towards integrins inhibits osteosarcoma tumor growth in vitro and in vivo. Witlox, A.M., Van Beusechem, V.W., Molenaar, B., Bras, H., Schaap, G.R., Alemany, R., Curiel, D.T., Pinedo, H.M., Wuisman, P.I., Gerritsen, W.R. Clin. Cancer Res. (2004) [Pubmed]
  17. Determination of essential amino acids involved in the CD4-independent tropism of the X4 human immunodeficiency virus type 1 m7NDK isolate: role of potential N glycosylations in the C2 and V3 regions of gp120. Dumonceaux, J., Goujon, C., Joliot, V., Briand, P., Hazan, U. J. Virol. (2001) [Pubmed]
  18. HIV-1 tropism for mononuclear phagocytes can be determined by regions of gp120 outside the CD4-binding domain. O'Brien, W.A., Koyanagi, Y., Namazie, A., Zhao, J.Q., Diagne, A., Idler, K., Zack, J.A., Chen, I.S. Nature (1990) [Pubmed]
  19. Differential coreceptor expression allows for independent evolution of non-syncytium-inducing and syncytium-inducing HIV-1. van Rij, R.P., Blaak, H., Visser, J.A., Brouwer, M., Rientsma, R., Broersen, S., de Roda Husman, A.M., Schuitemaker, H. J. Clin. Invest. (2000) [Pubmed]
  20. Transcriptional regulation of the human papillomavirus-16 E6-E7 promoter by a keratinocyte-dependent enhancer, and by viral E2 trans-activator and repressor gene products: implications for cervical carcinogenesis. Cripe, T.P., Haugen, T.H., Turk, J.P., Tabatabai, F., Schmid, P.G., Dürst, M., Gissmann, L., Roman, A., Turek, L.P. EMBO J. (1987) [Pubmed]
  21. Molecular basis of reovirus neurovirulence: role of the M2 gene in avirulence. Hrdy, D.B., Rubin, D.H., Fields, B.N. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  22. Fusogenic selectivity of the envelope glycoprotein is a major determinant of human immunodeficiency virus type 1 tropism for CD4+ T-cell lines vs. primary macrophages. Broder, C.C., Berger, E.A. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  23. Macrophage and T cell-line tropisms of HIV-1 are determined by specific regions of the envelope gp120 gene. Shioda, T., Levy, J.A., Cheng-Mayer, C. Nature (1991) [Pubmed]
  24. Generation of splenic follicular structure and B cell movement in tumor necrosis factor-deficient mice. Cook, M.C., Körner, H., Riminton, D.S., Lemckert, F.A., Hasbold, J., Amesbury, M., Hodgkin, P.D., Cyster, J.G., Sedgwick, J.D., Basten, A. J. Exp. Med. (1998) [Pubmed]
  25. Lymphocytes and leukemia viruses: tropism and transtropism of murine leukemia virus. Datta, S.K., Melief, C.J., Schwartz, R.S. J. Natl. Cancer Inst. (1975) [Pubmed]
  26. Human parvovirus B19. Heegaard, E.D., Brown, K.E. Clin. Microbiol. Rev. (2002) [Pubmed]
  27. Relative inefficiency of soluble recombinant CD4 for inhibition of infection by monocyte-tropic HIV in monocytes and T cells. Gomatos, P.J., Stamatos, N.M., Gendelman, H.E., Fowler, A., Hoover, D.L., Kalter, D.C., Burke, D.S., Tramont, E.C., Meltzer, M.S. J. Immunol. (1990) [Pubmed]
  28. Disease tropism of c-erbB: effects of carboxyl-terminal tyrosine and internal mutations on tissue-specific transformation. Pelley, R.J., Maihle, N.J., Boerkoel, C., Shu, H.K., Carter, T.H., Moscovici, C., Kung, H.J. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  29. Modeling a sialic acid binding pocket in the external loops of JC virus VP1. Gee, G.V., Tsomaia, N., Mierke, D.F., Atwood, W.J. J. Biol. Chem. (2004) [Pubmed]
  30. The mouse homologue of the human transcription factor C1 (host cell factor). Conservation of forms and function. Kristie, T.M. J. Biol. Chem. (1997) [Pubmed]
  31. Role for a secreted cysteine proteinase in the establishment of host tissue tropism by group A streptococci. Svensson, M.D., Scaramuzzino, D.A., Sjöbring, U., Olsén, A., Frank, C., Bessen, D.E. Mol. Microbiol. (2000) [Pubmed]
  32. Thymic lymphomas in interleukin 9 transgenic mice. Renauld, J.C., van der Lugt, N., Vink, A., van Roon, M., Godfraind, C., Warnier, G., Merz, H., Feller, A., Berns, A., Van Snick, J. Oncogene (1994) [Pubmed]
  33. Persistence of dual-tropic HIV-1 in an individual homozygous for the CCR5 Delta 32 allele. Gorry, P.R., Zhang, C., Wu, S., Kunstman, K., Trachtenberg, E., Phair, J., Wolinsky, S., Gabuzda, D. Lancet (2002) [Pubmed]
  34. Evolution of HIV-1 coreceptor usage through interactions with distinct CCR5 and CXCR4 domains. Lu, Z., Berson, J.F., Chen, Y., Turner, J.D., Zhang, T., Sharron, M., Jenks, M.H., Wang, Z., Kim, J., Rucker, J., Hoxie, J.A., Peiper, S.C., Doms, R.W. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  35. Helicobacter pylori interacts with the human single-domain trefoil protein TFF1. Clyne, M., Dillon, P., Daly, S., O'Kennedy, R., May, F.E., Westley, B.R., Drumm, B. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  36. Ephrin-B2 ligand is a functional receptor for Hendra virus and Nipah virus. Bonaparte, M.I., Dimitrov, A.S., Bossart, K.N., Crameri, G., Mungall, B.A., Bishop, K.A., Choudhry, V., Dimitrov, D.S., Wang, L.F., Eaton, B.T., Broder, C.C. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  37. Monocyte chemotactic protein-2 activates CCR5 and blocks CD4/CCR5-mediated HIV-1 entry/replication. Gong, W., Howard, O.M., Turpin, J.A., Grimm, M.C., Ueda, H., Gray, P.W., Raport, C.J., Oppenheim, J.J., Wang, J.M. J. Biol. Chem. (1998) [Pubmed]
  38. Virus-induced diabetes mellitus. Glucose abnormalities produced in mice by the six members of the Coxsackie B virus group. Toniolo, A., Onodera, T., Jordan, G., Yoon, J.W., Notkins, A.L. Diabetes (1982) [Pubmed]
  39. Adenovirus type 5 viral particles pseudotyped with mutagenized fiber proteins show diminished infectivity of coxsackie B-adenovirus receptor-bearing cells. Jakubczak, J.L., Rollence, M.L., Stewart, D.A., Jafari, J.D., Von Seggern, D.J., Nemerow, G.R., Stevenson, S.C., Hallenbeck, P.L. J. Virol. (2001) [Pubmed]
  40. Neurotropism of rabies virus. An in vitro study. Tsiang, H., Koulakoff, A., Bizzini, B., Berwald-Netter, Y. J. Neuropathol. Exp. Neurol. (1983) [Pubmed]
  41. Insertional mutagenesis at positions 520 and 584 of adeno-associated virus type 2 (AAV2) capsid gene and generation of AAV2 vectors with eliminated heparin- binding ability and introduced novel tropism. Shi, X., Fang, G., Shi, W. Hum. Gene Ther. (2006) [Pubmed]
WikiGenes - Universities