The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

SLC16A4  -  solute carrier family 16, member 4

Homo sapiens

Synonyms: MCT 4, MCT 5, MCT4, MCT5, Monocarboxylate transporter 4, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of SLC16A4

 

High impact information on SLC16A4

 

Biological context of SLC16A4

 

Anatomical context of SLC16A4

  • Immunohistochemical studies confirmed that human MCT1 antibody labeling was confined to the apical membranes, whereas MCT5 antibody staining was restricted to the basolateral membranes of the colonocytes [9].
  • Lactate is released from skeletal muscle in proportion to glucose uptake rates, and it leaves the cells via simple diffusion and two monocarboxylate transporter proteins, MCT1 and MCT4 [10].
  • MCT4 expression appears to be specific for astrocytes [11].
  • In addition, we also examined the effects of testosterone treatment on plasmalemmal MCT1 and MCT4, and lactate transport into giant sarcolemmal vesicles prepared from red and white hindlimb muscles and the heart [4].
  • To evaluate the effects of endurance training on the expression of monocarboxylate transporters (MCT) in human vastus lateralis muscle, we compared the amounts of MCT1 and MCT4 in total muscle preparations (MU) and sarcolemma-enriched (SL) and mitochondria-enriched (MI) fractions before and after training [12].
 

Associations of SLC16A4 with chemical compounds

 

Analytical, diagnostic and therapeutic context of SLC16A4

  • The Western blotting revealed a positive, linear relationship between the MCT1 content and the occurrence of type I fibers in the muscle, but no significant relation was found between MCT4 content and fiber type [17].
  • The immunofluorescence microscopy showed that within a given muscle section, the MCT4 isoform was clearly more abundant in type II fibers than in type I fibers, whereas only minor differences existed in the occurrence of the MCT1 isoform between type I and II fibers [17].
  • ELISA indicated the expression of only MCT1, MCT4, and MCT8 isoforms by ARPE-19 cells [18].

References

  1. Expression of MCT1 and MCT4 in a patient with mitochondrial myopathy. Baker, S.K., Tarnopolsky, M.A., Bonen, A. Muscle Nerve (2001) [Pubmed]
  2. Placental lactate transporter activity and expression in intrauterine growth restriction. Settle, P., Sibley, C.P., Doughty, I.M., Johnston, T., Glazier, J.D., Powell, T.L., Jansson, T., D'Souza, S.W. J. Soc. Gynecol. Investig. (2006) [Pubmed]
  3. The role of charged residues in the transmembrane helices of monocarboxylate transporter 1 and its ancillary protein basigin in determining plasma membrane expression and catalytic activity. Manoharan, C., Wilson, M.C., Sessions, R.B., Halestrap, A.P. Mol. Membr. Biol. (2006) [Pubmed]
  4. Testosterone increases lactate transport, monocarboxylate transporter (MCT) 1 and MCT4 in rat skeletal muscle. Enoki, T., Yoshida, Y., Lally, J., Hatta, H., Bonen, A. J. Physiol. (Lond.) (2006) [Pubmed]
  5. Simvastatin induces impairment in skeletal muscle while heart is protected. Sirvent, P., Bordenave, S., Vermaelen, M., Roels, B., Vassort, G., Mercier, J., Raynaud, E., Lacampagne, A. Biochem. Biophys. Res. Commun. (2005) [Pubmed]
  6. Effects of live high, train low hypoxic exposure on lactate metabolism in trained humans. Clark, S.A., Aughey, R.J., Gore, C.J., Hahn, A.G., Townsend, N.E., Kinsman, T.A., Chow, C.M., McKenna, M.J., Hawley, J.A. J. Appl. Physiol. (2004) [Pubmed]
  7. The effects of short-term sprint training on MCT expression in moderately endurance-trained runners. Bickham, D.C., Bentley, D.J., Rossignol, P.F., Cameron-Smith, D. Eur. J. Appl. Physiol. (2006) [Pubmed]
  8. Thyroid hormone mediated changes in gene expression can be initiated by cytosolic action of the thyroid hormone receptor beta through the phosphatidylinositol 3-kinase pathway. Moeller, L.C., Cao, X., Dumitrescu, A.M., Seo, H., Refetoff, S. Nuclear receptor signaling [electronic resource] : the e-journal of NURSA. (2006) [Pubmed]
  9. Expression and membrane localization of MCT isoforms along the length of the human intestine. Gill, R.K., Saksena, S., Alrefai, W.A., Sarwar, Z., Goldstein, J.L., Carroll, R.E., Ramaswamy, K., Dudeja, P.K. Am. J. Physiol., Cell Physiol. (2005) [Pubmed]
  10. Effects of strength training on muscle lactate release and MCT1 and MCT4 content in healthy and type 2 diabetic humans. Juel, C., Holten, M.K., Dela, F. J. Physiol. (Lond.) (2004) [Pubmed]
  11. Monocarboxylate transporters in the central nervous system: distribution, regulation and function. Pierre, K., Pellerin, L. J. Neurochem. (2005) [Pubmed]
  12. Endurance training, expression, and physiology of LDH, MCT1, and MCT4 in human skeletal muscle. Dubouchaud, H., Butterfield, G.E., Wolfel, E.E., Bergman, B.C., Brooks, G.A. Am. J. Physiol. Endocrinol. Metab. (2000) [Pubmed]
  13. Transport mechanism for L-lactic acid in human myocytes using human prototypic embryonal rhabdomyosarcoma cell line (RD cells). Kobayashi, M., Fujita, I., Itagaki, S., Hirano, T., Iseki, K. Biol. Pharm. Bull. (2005) [Pubmed]
  14. Monocarboxylate transporters, blood lactate removal after supramaximal exercise, and fatigue indexes in humans. Thomas, C., Perrey, S., Lambert, K., Hugon, G., Mornet, D., Mercier, J. J. Appl. Physiol. (2005) [Pubmed]
  15. Transepithelial transport of telmisartan in caco-2 monolayers. Goto, Y., Itagaki, S., Umeda, S., Kobayashi, M., Hirano, T., Iseki, K., Tadano, K. Biol. Pharm. Bull. (2005) [Pubmed]
  16. Characterisation of human monocarboxylate transporter 4 substantiates its role in lactic acid efflux from skeletal muscle. Manning Fox, J.E., Meredith, D., Halestrap, A.P. J. Physiol. (Lond.) (2000) [Pubmed]
  17. Distribution of the lactate/H+ transporter isoforms MCT1 and MCT4 in human skeletal muscle. Pilegaard, H., Terzis, G., Halestrap, A., Juel, C. Am. J. Physiol. (1999) [Pubmed]
  18. Functional activity of a monocarboxylate transporter, MCT1, in the human retinal pigmented epithelium cell line, ARPE-19. Majumdar, S., Gunda, S., Pal, D., Mitra, A.K. Mol. Pharm. (2005) [Pubmed]
 
WikiGenes - Universities