The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

KCNQ4  -  potassium channel, voltage gated KQT-like...

Homo sapiens

Synonyms: DFNA2, DFNA2A, KQT-like 4, KV7.4, Kv7.4, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of KCNQ4


High impact information on KCNQ4


Biological context of KCNQ4


Anatomical context of KCNQ4


Associations of KCNQ4 with chemical compounds

  • We found that CaM overexpression reduced NEM augmentation of KCNQ2, KCNQ4, and KCNQ5, and NEM pretreatment reduced Ca2+/CaM-mediated suppression of M current in sympathetic neurons by bradykinin [15].
  • To further localize the site of NEM action, we mutated three cysteine residues in the C terminus of KCNQ4 [16].
  • KCNQ4 channel activation by BMS-204352 and retigabine [17].
  • The KCNQ4 channels were blocked in a voltage-independent manner by the memory-enhancing M current blockers XE-991 and linopirdine with IC(50) values of 5.5 and 14 microM, respectively [9].
  • The antiarrhythmic KCNQ1 channel blocker bepridil inhibited KCNQ4 with an IC(50) value of 9.4 microM, whereas clofilium was without significant effect at 100 microM [9].

Physical interactions of KCNQ4

  • This might suggest modulation of KCNQ4 by interacting KCNE Beta-subunits, which are known to modify the properties of the closely related KCNQ1 [2].
  • We suggest that KCNQ4 phosphorylation via PKA and coupling to a complex that may include prestin can lead to the negative activation and the negative resting potential found in adult OHCs [10].

Regulatory relationships of KCNQ4


Other interactions of KCNQ4

  • Chimeras constructed from different lengths of the KCNQ4 carboxy terminal and the rest KCNQ3 localized a region that confers sensitivity to Ca2+/CaM [15].
  • NEM increased the P(o) of KCNQ2, KCNQ4, and KCNQ5 by threefold to fourfold but had no effect on their unitary conductances, suggesting that the increase in macroscopic currents can be accounted for by increases in P(o) [16].
  • GJB3 is a member of the connexin gene family and KCNQ4 is a voltage-gated potassium channel [19].
  • Co-expression of KCNQ4 and prestin, the OHC motor protein, altered the voltage activation by a further -15 mV [10].
  • Clinical and genetic features of nonsyndromic autosomal dominant sensorineural hearing loss: KCNQ4 is a gene responsible in Japanese [20].

Analytical, diagnostic and therapeutic context of KCNQ4


  1. KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Kubisch, C., Schroeder, B.C., Friedrich, T., Lütjohann, B., El-Amraoui, A., Marlin, S., Petit, C., Jentsch, T.J. Cell (1999) [Pubmed]
  2. Functional coassembly of KCNQ4 with KCNE-beta- subunits in Xenopus oocytes. Strutz-Seebohm, N., Seebohm, G., Fedorenko, O., Baltaev, R., Engel, J., Knirsch, M., Lang, F. Cell. Physiol. Biochem. (2006) [Pubmed]
  3. Functional coupling between heterologously expressed dopamine D(2) receptors and KCNQ channels. Ljungstrom, T., Grunnet, M., Jensen, B.S., Olesen, S.P. Pflugers Arch. (2003) [Pubmed]
  4. Differential expression of KCNQ4 in inner hair cells and sensory neurons is the basis of progressive high-frequency hearing loss. Beisel, K.W., Rocha-Sanchez, S.M., Morris, K.A., Nie, L., Feng, F., Kachar, B., Yamoah, E.N., Fritzsch, B. J. Neurosci. (2005) [Pubmed]
  5. Inherited nonsyndromic hearing loss. An audiovestibular study in a large family with autosomal dominant progressive hearing loss related to DFNA2. Marres, H., van Ewijk, M., Huygen, P., Kunst, H., van Camp, G., Coucke, P., Willems, P., Cremers, C. Arch. Otolaryngol. Head Neck Surg. (1997) [Pubmed]
  6. A constitutively open potassium channel formed by KCNQ1 and KCNE3. Schroeder, B.C., Waldegger, S., Fehr, S., Bleich, M., Warth, R., Greger, R., Jentsch, T.J. Nature (2000) [Pubmed]
  7. Mice with altered KCNQ4 K+ channels implicate sensory outer hair cells in human progressive deafness. Kharkovets, T., Dedek, K., Maier, H., Schweizer, M., Khimich, D., Nouvian, R., Vardanyan, V., Leuwer, R., Moser, T., Jentsch, T.J. EMBO J. (2006) [Pubmed]
  8. Mutations in the KCNQ4 gene are responsible for autosomal dominant deafness in four DFNA2 families. Coucke, P.J., Van Hauwe, P., Kelley, P.M., Kunst, H., Schatteman, I., Van Velzen, D., Meyers, J., Ensink, R.J., Verstreken, M., Declau, F., Marres, H., Kastury, K., Bhasin, S., McGuirt, W.T., Smith, R.J., Cremers, C.W., Van de Heyning, P., Willems, P.J., Smith, S.D., Van Camp, G. Hum. Mol. Genet. (1999) [Pubmed]
  9. KCNQ4 channels expressed in mammalian cells: functional characteristics and pharmacology. Søgaard, R., Ljungstrøm, T., Pedersen, K.A., Olesen, S.P., Jensen, B.S. Am. J. Physiol., Cell Physiol. (2001) [Pubmed]
  10. Regulation of the voltage-gated potassium channel KCNQ4 in the auditory pathway. Chambard, J.M., Ashmore, J.F. Pflugers Arch. (2005) [Pubmed]
  11. A mutational hot spot in the KCNQ4 gene responsible for autosomal dominant hearing impairment. Van Camp, G., Coucke, P.J., Akita, J., Fransen, E., Abe, S., De Leenheer, E.M., Huygen, P.L., Cremers, C.W., Usami, S. Hum. Mutat. (2002) [Pubmed]
  12. KCNQ potassium channels: physiology, pathophysiology, and pharmacology. Robbins, J. Pharmacol. Ther. (2001) [Pubmed]
  13. Longitudinal gradients of KCNQ4 expression in spiral ganglion and cochlear hair cells correlate with progressive hearing loss in DFNA2. Beisel, K.W., Nelson, N.C., Delimont, D.C., Fritzsch, B. Brain Res. Mol. Brain Res. (2000) [Pubmed]
  14. Further evidence for a third deafness gene within the DFNA2 locus. Goldstein, J.A., Lalwani, A.K. Am. J. Med. Genet. (2002) [Pubmed]
  15. Structural requirements for differential sensitivity of KCNQ K+ channels to modulation by Ca2+/calmodulin. Gamper, N., Li, Y., Shapiro, M.S. Mol. Biol. Cell (2005) [Pubmed]
  16. Single-channel analysis of KCNQ K+ channels reveals the mechanism of augmentation by a cysteine-modifying reagent. Li, Y., Gamper, N., Shapiro, M.S. J. Neurosci. (2004) [Pubmed]
  17. KCNQ4 channel activation by BMS-204352 and retigabine. Schrøder, R.L., Jespersen, T., Christophersen, P., Strøbaek, D., Jensen, B.S., Olesen, S.P. Neuropharmacology (2001) [Pubmed]
  18. Thyroid hormone receptors TRalpha1 and TRbeta differentially regulate gene expression of Kcnq4 and prestin during final differentiation of outer hair cells. Winter, H., Braig, C., Zimmermann, U., Geisler, H.S., Fränzer, J.T., Weber, T., Ley, M., Engel, J., Knirsch, M., Bauer, K., Christ, S., Walsh, E.J., McGee, J., Köpschall, I., Rohbock, K., Knipper, M. J. Cell. Sci. (2006) [Pubmed]
  19. Mutations in the KCNQ4 K+ channel gene, responsible for autosomal dominant hearing loss, cluster in the channel pore region. Van Hauwe, P., Coucke, P.J., Ensink, R.J., Huygen, P., Cremers, C.W., Van Camp, G. Am. J. Med. Genet. (2000) [Pubmed]
  20. Clinical and genetic features of nonsyndromic autosomal dominant sensorineural hearing loss: KCNQ4 is a gene responsible in Japanese. Akita, J., Abe, S., Shinkawa, H., Kimberling, W.J., Usami, S. J. Hum. Genet. (2001) [Pubmed]
  21. The KCNQ channel opener retigabine inhibits the activity of mesencephalic dopaminergic systems of the rat. Hansen, H.H., Ebbesen, C., Mathiesen, C., Weikop, P., Rønn, L.C., Waroux, O., Scuvée-Moreau, J., Seutin, V., Mikkelsen, J.D. J. Pharmacol. Exp. Ther. (2006) [Pubmed]
WikiGenes - Universities