The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Endolymph


High impact information on Endolymph

  • Taken together, our data indicate that KVLQT1 is responsible for both JLN and RW syndromes and has a key role not only in the ventricular repolarization but also in normal hearing, probably via the control of endolymph homeostasis [6].
  • This suggests EphB2 may regulate ionic homeostasis and endolymph fluid production through macromolecular associations with membrane channels that transport chloride, bicarbonate, and water [7].
  • Histological analysis of the inner ear structures of Kcnq1(-/-) mice revealed gross morphological anomalies because of the drastic reduction in the volume of endolymph [8].
  • Cx43 must also play a critical role in the physiology of hearing, presumably by participating in the recycling of potassium to the cochlear endolymph [9].
  • Shaker-with-syndactylism (sy) is a classic deaf mouse mutant and we show here that a second allele, sy(ns), is associated with abnormal production of endolymph, the fluid bathing sensory hair cells [10].

Chemical compound and disease context of Endolymph


Biological context of Endolymph


Anatomical context of Endolymph


Associations of Endolymph with chemical compounds

  • However, when cells were exposed to high apically K(+)/low Na(+) fluid, mimicking endolymph exposure, I(sK)/KvLQT1 actually functioned as a strict apical to basolateral K(+) channel inhibited by clofilium [26].
  • The positivity of a perchlorate discharge test and the malformations of membranous labyrinth fit well with the recent achievements on the role of pendrin in thyroid hormonogenesis and the maintenance of endolymph homeostasis [27].
  • Na+-K+-activated ATPase in the ampullar dark cells may energize the ouabain sensitive ionic transports that are involved in the production of endolymph [28].
  • Cochlear sensory transduction depends on active extrusion of sodium ion (Na(+)) from the luminal fluid, endolymph [29].
  • HCO(3) (-) secreted from the ionocytes may serve as a barrier to neutralize H(+) diffused from the sensory macula while keeping the endolymph alkaline outside the sensory macula [30].

Gene context of Endolymph

  • Strial marginal cells secrete K+ across the apical membrane into endolymph via the K+ channel KCNQ1/KCNE1, which concludes the cochlear cycle [31].
  • In addition, Cdh23 is expressed in the urticulo-saccular foramen,the ductus reuniens, and Reissner's membrane, suggesting that Cdh23 may also be involved in maintaining the ionic composition of the endolymph [32].
  • The effects of AVP on the endolymphatic sac (ES) of the inner ear, which is thought to mediate reabsorption of endolymph, were investigated [33].
  • Endolymph volume in Slc26a4-/- mice was increased and tissue masses in areas normally occupied by type I and II fibrocytes were reduced [34].
  • In non-neuronal cells, TREK-1 was immunodetected in the apical membrane of dark cells and transitional cells, both of which are involved in endolymph K(+) secretion and recycling [35].

Analytical, diagnostic and therapeutic context of Endolymph


  1. KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Kubisch, C., Schroeder, B.C., Friedrich, T., Lütjohann, B., El-Amraoui, A., Marlin, S., Petit, C., Jentsch, T.J. Cell (1999) [Pubmed]
  2. Permeability to potassium of the endolymph-perilymph barrier and its possible relation to hair cell function. Konishi, T., Salt, A.N. Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale. (1980) [Pubmed]
  3. Signs of endolymphatic hydrops after perilymphatic perfusion of the guinea pig cochlea with cholera toxin; a pharmacological model of acute endolymphatic hydrops. Lohuis, P.J., Klis, S.F., Klop, W.M., van Emst, M.G., Smoorenburg, G.F. Hear. Res. (1999) [Pubmed]
  4. Time-related alteration of endolymph composition in an experimental model of endolymphatic hydrops. Sziklai, I., Ferrary, E., Horner, K.C., Sterkers, O., Amiel, C. Laryngoscope (1992) [Pubmed]
  5. Use of streptomycin sulfate in the treatment of Meniere's disease. Silverstein, H., Hyman, S.M., Feldbaum, J., Silverstein, D. Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery. (1984) [Pubmed]
  6. A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome. Neyroud, N., Tesson, F., Denjoy, I., Leibovici, M., Donger, C., Barhanin, J., Fauré, S., Gary, F., Coumel, P., Petit, C., Schwartz, K., Guicheney, P. Nat. Genet. (1997) [Pubmed]
  7. EphB2 guides axons at the midline and is necessary for normal vestibular function. Cowan, C.A., Yokoyama, N., Bianchi, L.M., Henkemeyer, M., Fritzsch, B. Neuron (2000) [Pubmed]
  8. Targeted disruption of the Kcnq1 gene produces a mouse model of Jervell and Lange-Nielsen Syndrome. Casimiro, M.C., Knollmann, B.C., Ebert, S.N., Vary, J.C., Greene, A.E., Franz, M.R., Grinberg, A., Huang, S.P., Pfeifer, K. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  9. Mutations in GJA1 (connexin 43) are associated with non-syndromic autosomal recessive deafness. Liu, X.Z., Xia, X.J., Adams, J., Chen, Z.Y., Welch, K.O., Tekin, M., Ouyang, X.M., Kristiansen, A., Pandya, A., Balkany, T., Arnos, K.S., Nance, W.E. Hum. Mol. Genet. (2001) [Pubmed]
  10. Mutation of the Na-K-Cl co-transporter gene Slc12a2 results in deafness in mice. Dixon, M.J., Gazzard, J., Chaudhry, S.S., Sampson, N., Schulte, B.A., Steel, K.P. Hum. Mol. Genet. (1999) [Pubmed]
  11. A correlation of the effects of normoxia, hyperoxia and anoxia on PO2 of endolymph and cochlear potentials. Prazma, J., Fischer, N.D., Biggers, W.P., Ascher, D. Hear. Res. (1978) [Pubmed]
  12. Mannitol-induced stria vascularis edema. Duvall, A.J., Hukee, M.J., Santi, P.A. Archives of otolaryngology (Chicago, Ill. : 1960) (1981) [Pubmed]
  13. Ion transport in the endolymphatic space. Morgenstern, C., Amano, H., Orsulakova, A. American journal of otolaryngology. (1982) [Pubmed]
  14. Streptomycin treatment for Meniere's disease. Silverstein, H. The Annals of otology, rhinology & laryngology. Supplement. (1984) [Pubmed]
  15. Ion transport in the cochlea of guinea pig. II. Chloride transport. Konishi, T., Hamrick, P.E. Acta Otolaryngol. (1978) [Pubmed]
  16. Nonselective cation and BK channels in apical membrane of outer sulcus epithelial cells. Chiba, T., Marcus, D.C. J. Membr. Biol. (2000) [Pubmed]
  17. Furosemide ototoxicity: clinical and experimental aspects. Rybak, L.P. Laryngoscope (1985) [Pubmed]
  18. Ethacrynic acid facilitates gentamicin entry into endolymph of the rat. Tran Ba Huy, P., Manuel, C., Meulemans, A., Sterkers, O., Wassef, M., Amiel, C. Hear. Res. (1983) [Pubmed]
  19. Immunohistochemical localization of G protein betagamma subunits in the lateral wall of the rat cochlea. Khan, K.M., Sarfaraz, N., Siddiqui, S., Nawaz, H. J. Anat. (2006) [Pubmed]
  20. Pharmacokinetics of furosemide in endolymph. Hara, A., Machiki, K., Senarita, M., Komeno, M., Kusakari, J. Auris, nasus, larynx. (1993) [Pubmed]
  21. Gentamicin persistence in rat endolymph and perilymph after a two-day constant infusion. Tran Ba Huy, P., Meulemans, A., Wassef, M., Manuel, C., Sterkers, O., Amiel, C. Antimicrob. Agents Chemother. (1983) [Pubmed]
  22. Genomic structure, cochlear expression, and mutation screening of KCNK6, a candidate gene for DFNA4. Mhatre, A.N., Li, J., Chen, A.F., Yost, C.S., Smith, R.J., Kindler, C.H., Lalwani, A.K. J. Neurosci. Res. (2004) [Pubmed]
  23. Ionic and potential changes of the endolymphatic sac induced by endolymph volume changes. Salt, A.N., DeMott, J.E. Hear. Res. (2000) [Pubmed]
  24. Effect of cisplatin administration on the electrochemical composition of endolymph in the rat cochlea. Laurell, G., Teixeira, M., Sterkers, O., Ferrary, E. Hear. Res. (1995) [Pubmed]
  25. Histological preparation of developing vestibular otoconia for scanning electron microscopy. Huss, D., Dickman, J.D. J. Neurosci. Methods (2003) [Pubmed]
  26. Functional IsK/KvLQT1 potassium channel in a new corticosteroid-sensitive cell line derived from the inner ear. Teixeira, M., Viengchareun, S., Butlen, D., Ferreira, C., Cluzeaud, F., Blot-Chabaud, M., Lombès, M., Ferrary, E. J. Biol. Chem. (2006) [Pubmed]
  27. Molecular analysis of the Pendred's syndrome gene and magnetic resonance imaging studies of the inner ear are essential for the diagnosis of true Pendred's syndrome. Fugazzola, L., Mannavola, D., Cerutti, N., Maghnie, M., Pagella, F., Bianchi, P., Weber, G., Persani, L., Beck-Peccoz, P. J. Clin. Endocrinol. Metab. (2000) [Pubmed]
  28. Production of endolymph in the semicircular canal of the frog Rana esculenta. Bernard, C., Ferrary, E., Sterkers, O. J. Physiol. (Lond.) (1986) [Pubmed]
  29. Endolymphatic sodium homeostasis by Reissner's membrane. Lee, J.H., Marcus, D.C. Neuroscience (2003) [Pubmed]
  30. How can teleostean inner ear hair cells maintain the proper association with the accreting otolith? Shiao, J.C., Lin, L.Y., Horng, J.L., Hwang, P.P., Kaneko, T. J. Comp. Neurol. (2005) [Pubmed]
  31. K+ cycling and the endocochlear potential. Wangemann, P. Hear. Res. (2002) [Pubmed]
  32. Mutations in Cdh23 cause nonsyndromic hearing loss in waltzer mice. Wilson, S.M., Householder, D.B., Coppola, V., Tessarollo, L., Fritzsch, B., Lee, E.C., Goss, D., Carlson, G.A., Copeland, N.G., Jenkins, N.A. Genomics (2001) [Pubmed]
  33. The effect of anti-diuretic hormone on the endolymphatic sac of the inner ear. Kumagami, H., Loewenheim, H., Beitz, E., Wild, K., Schwartz, H., Yamashita, K., Schultz, J., Paysan, J., Zenner, H.P., Ruppersberg, J.P. Pflugers Arch. (1998) [Pubmed]
  34. Loss of KCNJ10 protein expression abolishes endocochlear potential and causes deafness in Pendred syndrome mouse model. Wangemann, P., Itza, E.M., Albrecht, B., Wu, T., Jabba, S.V., Maganti, R.J., Lee, J.H., Everett, L.A., Wall, S.M., Royaux, I.E., Green, E.D., Marcus, D.C. BMC medicine [electronic resource]. (2004) [Pubmed]
  35. Localization of TREK-1, a two-pore-domain K+ channel in the peripheral vestibular system of mouse and rat. Nicolas, M.T., Lesage, F., Reyes, R., Barhanin, J., Demêmes, D. Brain Res. (2004) [Pubmed]
  36. Changes in endolymph chloride concentration following furosemide injection. Rybak, L.P., Whitworth, C. Hear. Res. (1986) [Pubmed]
  37. Changes in ultrastructural characteristics of endolymphatic sac ribosome-rich cells of the rat during development. Peters, T.A., Tonnaer, E.L., Kuijpers, W., Curfs, J.H. Hear. Res. (2003) [Pubmed]
  38. Mineralocorticoid type I receptor in the rat cochlea: mRNA identification by polymerase chain reaction (PCR) and in situ hybridization. Furuta, H., Mori, N., Sato, C., Hoshikawa, H., Sakai, S., Iwakura, S., Doi, K. Hear. Res. (1994) [Pubmed]
  39. Low endolymph calcium concentrations in deafwaddler2J mice suggest that PMCA2 contributes to endolymph calcium maintenance. Wood, J.D., Muchinsky, S.J., Filoteo, A.G., Penniston, J.T., Tempel, B.L. J. Assoc. Res. Otolaryngol. (2004) [Pubmed]
  40. Comparison of endolymph cross-sectional area measured histologically with that measured in vivo with an ionic volume marker. Salt, A.N., DeMott, J.E., Kimura, R.S. The Annals of otology, rhinology, and laryngology. (1995) [Pubmed]
WikiGenes - Universities