The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

malE  -  maltose ABC transporter substrate-binding...

Escherichia coli O157:H7 str. EDL933

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of malE

  • To understand whether the cytoplasmic domain of human immunodeficiency virus type 1 transmembrane protein gp41 has the potential to self-assemble as an oligomer, in the present study we fused the coding sequence of the entire cytoplasmic domain at 3' to the Escherichia coli malE gene, which encodes a monomeric maltose-binding protein [1].
  • We fused the wild-type Agrobacterium tumefaciens virG gene and the constitutive virGN54D allele to the malE gene of Escherichia coli, and studied the binding of MBP-VirG fusions to the autoregulated virG promoter [2].
  • Immune responses induced by recombinant BCG strains according to level of production of a foreign antigen: malE [3].
  • Various constructs of the human immunodeficiency virus, type 1 (HIV-1) protease containing flanking Pol region sequences were expressed as fusion proteins with the maltose-binding protein of the malE gene of Escherichia coli [4].
  • These showed the phenotypes and regulation expected for malB fusions and could be used to isolate specialized transducing phages carrying the entire gene fusion as well as an adjacent gene (malE) [5].
 

High impact information on malE

 

Chemical compound and disease context of malE

 

Biological context of malE

  • The plasmid with the malE-pilR fusion, when introduced into a non-piliated pilR mutant strain of P. aeruginosa, restored piliation, indicating that the hybrid protein retains PilR function in vivo [12].
  • Maltose chemotaxis was reconstituted in delta malE cells lacking maltose-binding protein (MBP) [13].
  • The distinction between fluorescent and nonfluorescent colonies was exploited as a scorable phenotype to isolate malE signal sequence mutations [14].
  • The use of green fluorescent protein (GFP) as a reporter for protein localization in Escherichia coli was explored by creating gene fusions between malE (encoding maltose-binding protein [MBP]) and a variant of gfp optimized for fluorescence in bacteria (GFPuv) [14].
  • The malE gene lacking the DNA sequence that encodes the signal sequence was expressed in Escherichia coli [15].
 

Anatomical context of malE

 

Associations of malE with chemical compounds

 

Analytical, diagnostic and therapeutic context of malE

References

  1. Multimerization potential of the cytoplasmic domain of the human immunodeficiency virus type 1 transmembrane glycoprotein gp41. Lee, S.F., Wang, C.T., Liang, J.Y., Hong, S.L., Huang, C.C., Chen, S.S. J. Biol. Chem. (2000) [Pubmed]
  2. A mutation in the receiver domain of the Agrobacterium tumefaciens transcriptional regulator VirG increases its affinity for operator DNA. Han, D.C., Winans, S.C. Mol. Microbiol. (1994) [Pubmed]
  3. Immune responses induced by recombinant BCG strains according to level of production of a foreign antigen: malE. Himmelrich, H., Lo-Man, R., Winter, N., Guermonprez, P., Sedlik, C., Rojas, M., Monnaie, D., Gheorghiu, M., Lagranderie, M., Hofnung, M., Gicquel, B., Clément, J.M., Leclerc, C. Vaccine (2000) [Pubmed]
  4. Autoprocessing of the HIV-1 protease using purified wild-type and mutated fusion proteins expressed at high levels in Escherichia coli. Louis, J.M., McDonald, R.A., Nashed, N.T., Wondrak, E.M., Jerina, D.M., Oroszlan, S., Mora, P.T. Eur. J. Biochem. (1991) [Pubmed]
  5. Lambda placMu: a transposable derivative of bacteriophage lambda for creating lacZ protein fusions in a single step. Bremer, E., Silhavy, T.J., Weisemann, J.M., Weinstock, G.M. J. Bacteriol. (1984) [Pubmed]
  6. Maltose/maltodextrin system of Escherichia coli: transport, metabolism, and regulation. Boos, W., Shuman, H. Microbiol. Mol. Biol. Rev. (1998) [Pubmed]
  7. Demonstration of conformational changes associated with activation of the maltose transport complex. Mannering, D.E., Sharma, S., Davidson, A.L. J. Biol. Chem. (2001) [Pubmed]
  8. Truncation of MalF results in lactose transport via the maltose transport system of Escherichia coli. Merino, G., Shuman, H.A. J. Biol. Chem. (1998) [Pubmed]
  9. Maltose chemotaxis involves residues in the N-terminal and C-terminal domains on the same face of maltose-binding protein. Zhang, Y., Conway, C., Rosato, M., Suh, Y., Manson, M.D. J. Biol. Chem. (1992) [Pubmed]
  10. Purification and properties of the MalT protein, the transcription activator of the Escherichia coli maltose regulon. Richet, E., Raibaud, O. J. Biol. Chem. (1987) [Pubmed]
  11. Refined structures of the ligand-binding domain of the aspartate receptor from Salmonella typhimurium. Scott, W.G., Milligan, D.L., Milburn, M.V., Privé, G.G., Yeh, J., Koshland, D.E., Kim, S.H. J. Mol. Biol. (1993) [Pubmed]
  12. PilR, a transcriptional regulator of piliation in Pseudomonas aeruginosa, binds to a cis-acting sequence upstream of the pilin gene promoter. Jin, S., Ishimoto, K.S., Lory, S. Mol. Microbiol. (1994) [Pubmed]
  13. Reconstitution of maltose chemotaxis in Escherichia coli by addition of maltose-binding protein to calcium-treated cells of maltose regulon mutants. Brass, J.M., Manson, M.D. J. Bacteriol. (1984) [Pubmed]
  14. Green fluorescent protein functions as a reporter for protein localization in Escherichia coli. Feilmeier, B.J., Iseminger, G., Schroeder, D., Webber, H., Phillips, G.J. J. Bacteriol. (2000) [Pubmed]
  15. Maltose and maltodextrin transport in the thermoacidophilic gram-positive bacterium Alicyclobacillus acidocaldarius is mediated by a high-affinity transport system that includes a maltose binding protein tolerant to low pH. Hülsmann, A., Lurz, R., Scheffel, F., Schneider, E. J. Bacteriol. (2000) [Pubmed]
  16. An elongation factor Tu (EF-Tu) resistant to the EF-Tu inhibitor GE2270 in the producing organism Planobispora rosea. Sosio, M., Amati, G., Cappellano, C., Sarubbi, E., Monti, F., Donadio, S. Mol. Microbiol. (1996) [Pubmed]
  17. Expression and biological activity of genetic fusions between MalE, the maltose binding protein from Escherichia coli and portions of CD4, the T-cell receptor of the AIDS virus. Clément, J.M., Jehanno, M., Popescu, O., Saurin, W., Hofnung, M. Protein Expr. Purif. (1996) [Pubmed]
  18. Genetic approach to the role of tryptophan residues in the activities and fluorescence of a bacterial periplasmic maltose-binding protein. Martineau, P., Szmelcman, S., Spurlino, J.C., Quiocho, F.A., Hofnung, M. J. Mol. Biol. (1990) [Pubmed]
  19. Aspartate and maltose-binding protein interact with adjacent sites in the Tar chemotactic signal transducer of Escherichia coli. Gardina, P., Conway, C., Kossman, M., Manson, M. J. Bacteriol. (1992) [Pubmed]
  20. Expression in Escherichia coli and purification of human eosinophil-derived neurotoxin with ribonuclease activity. Sun, L., Li, M.S., Fisher, L.M., Spry, C.J. Protein Expr. Purif. (1995) [Pubmed]
  21. Maltose chemoreceptor of Escherichia coli: interaction of maltose-binding protein and the tar signal transducer. Kossmann, M., Wolff, C., Manson, M.D. J. Bacteriol. (1988) [Pubmed]
  22. Maltose transport in Aeromonas hydrophila: purification, biochemical characterization and partial protein sequence analysis of a periplasmic maltose-binding protein. Höner zu Bentrup, K., Schmid, R., Schneider, E. Microbiology (Reading, Engl.) (1994) [Pubmed]
  23. Immobilization of the periplasmic maltose-binding protein of Escherichia coli. Hayashi, H., Ohba, M. Ann. Microbiol. (Paris) (1982) [Pubmed]
 
WikiGenes - Universities