The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Orthopoxvirus

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Orthopoxvirus

 

High impact information on Orthopoxvirus

  • The IL-1 beta binding activity is present in other orthopoxviruses [6].
  • An active SECRET domain was found in another viral TNFR (CrmD) and three secreted proteins encoded by orthopoxviruses [7].
  • Possessing up to three TNFRs, including CrmD, which is secreted as disulfide-linked complexes in varied amounts by CPV and ECT, likely enhances the dynamics of the immune modulating mechanisms of orthopoxviruses [8].
  • Differential inhibition of the Fas- and granule-mediated cytolysis pathways by the orthopoxvirus cytokine response modifier A/SPI-2 and SPI-1 protein [5].
  • Recent evidence suggests that orthopoxviruses have an obligate requirement for arachidonic acid metabolites during replication in vivo and in vitro [9].
 

Chemical compound and disease context of Orthopoxvirus

  • Previous studies showed that the CDV and cyclic cidofovir (cCDV) analogs 1-O-hexa-decyloxypropyl-CDV (HDP-CDV) and 1-O-hexadecyloxypropyl-cCDV (HDP-cCDV), show >100-fold increases in antiviral activity versus the unmodified nucleosides against cells infected with orthopoxviruses, cowpox, and vaccinia virus [10].
  • Thus, the presence of two genes that belong to the plasma serine protease inhibitor superfamily may be characteristic of orthopoxviruses [11].
  • An orally bioavailable antipoxvirus compound (ST-246) inhibits extracellular virus formation and protects mice from lethal orthopoxvirus Challenge [12].
  • Treatment with the N glycosylation inhibitor tunicamycin converted the two SPI-3 proteins to a single 40-kDa protein, close to the size of 42 kDa predicted from the DNA sequence, suggesting that the SPI-3 protein, unlike the other two orthopoxvirus serpins, is a glycoprotein [13].
  • The alkoxyalkyl esters of (S)-HPMPA are promising new compounds worthy of further investigation for treatment of infections caused by herpes viruses and orthopoxviruses [14].
 

Biological context of Orthopoxvirus

 

Anatomical context of Orthopoxvirus

 

Gene context of Orthopoxvirus

 

Analytical, diagnostic and therapeutic context of Orthopoxvirus

References

  1. Vaccinia virus encodes a soluble type I interferon receptor of novel structure and broad species specificity. Symons, J.A., Alcamí, A., Smith, G.L. Cell (1995) [Pubmed]
  2. Virus proteins that bind cytokines, chemokines or interferons. Smith, G.L. Curr. Opin. Immunol. (1996) [Pubmed]
  3. Interferon function is not required for recovery from a secondary poxvirus infection. Panchanathan, V., Chaudhri, G., Karupiah, G. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  4. A protein phosphatase related to the vaccinia virus VH1 is encoded in the genomes of several orthopoxviruses and a baculovirus. Hakes, D.J., Martell, K.J., Zhao, W.G., Massung, R.F., Esposito, J.J., Dixon, J.E. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  5. Differential inhibition of the Fas- and granule-mediated cytolysis pathways by the orthopoxvirus cytokine response modifier A/SPI-2 and SPI-1 protein. Macen, J.L., Garner, R.S., Musy, P.Y., Brooks, M.A., Turner, P.C., Moyer, R.W., McFadden, G., Bleackley, R.C. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  6. A soluble receptor for interleukin-1 beta encoded by vaccinia virus: a novel mechanism of virus modulation of the host response to infection. Alcamí, A., Smith, G.L. Cell (1992) [Pubmed]
  7. A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus. Alejo, A., Ruiz-Argüello, M.B., Ho, Y., Smith, V.P., Saraiva, M., Alcami, A. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  8. A third distinct tumor necrosis factor receptor of orthopoxviruses. Loparev, V.N., Parsons, J.M., Knight, J.C., Panus, J.F., Ray, C.A., Buller, R.M., Pickup, D.J., Esposito, J.J. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  9. Poxvirus-induced alteration of arachidonate metabolism. Palumbo, G.J., Glasgow, W.C., Buller, R.M. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  10. Increased antiviral activity of 1-O-hexadecyloxypropyl-[2-(14)C]cidofovir in MRC-5 human lung fibroblasts is explained by unique cellular uptake and metabolism. Aldern, K.A., Ciesla, S.L., Winegarden, K.L., Hostetler, K.Y. Mol. Pharmacol. (2003) [Pubmed]
  11. Vaccinia virus encodes two proteins that are structurally related to members of the plasma serine protease inhibitor superfamily. Kotwal, G.J., Moss, B. J. Virol. (1989) [Pubmed]
  12. An orally bioavailable antipoxvirus compound (ST-246) inhibits extracellular virus formation and protects mice from lethal orthopoxvirus Challenge. Yang, G., Pevear, D.C., Davies, M.H., Collett, M.S., Bailey, T., Rippen, S., Barone, L., Burns, C., Rhodes, G., Tohan, S., Huggins, J.W., Baker, R.O., Buller, R.L., Touchette, E., Waller, K., Schriewer, J., Neyts, J., DeClercq, E., Jones, K., Hruby, D., Jordan, R. J. Virol. (2005) [Pubmed]
  13. Orthopoxvirus fusion inhibitor glycoprotein SPI-3 (open reading frame K2L) contains motifs characteristic of serine proteinase inhibitors that are not required for control of cell fusion. Turner, P.C., Moyer, R.W. J. Virol. (1995) [Pubmed]
  14. Synthesis and antiviral evaluation of alkoxyalkyl derivatives of 9-(S)-(3-hydroxy-2-phosphonomethoxypropyl)adenine against cytomegalovirus and orthopoxviruses. Beadle, J.R., Wan, W.B., Ciesla, S.L., Keith, K.A., Hartline, C., Kern, E.R., Hostetler, K.Y. J. Med. Chem. (2006) [Pubmed]
  15. Vaccinia virus B18R gene encodes a type I interferon-binding protein that blocks interferon alpha transmembrane signaling. Colamonici, O.R., Domanski, P., Sweitzer, S.M., Larner, A., Buller, R.M. J. Biol. Chem. (1995) [Pubmed]
  16. Vaccinia virus glycoprotein A34R is required for infectivity of extracellular enveloped virus. McIntosh, A.A., Smith, G.L. J. Virol. (1996) [Pubmed]
  17. Characterization of wild-type and cidofovir-resistant strains of camelpox, cowpox, monkeypox, and vaccinia viruses. Smee, D.F., Sidwell, R.W., Kefauver, D., Bray, M., Huggins, J.W. Antimicrob. Agents Chemother. (2002) [Pubmed]
  18. Potential antiviral therapeutics for smallpox, monkeypox and other orthopoxvirus infections. Baker, R.O., Bray, M., Huggins, J.W. Antiviral Res. (2003) [Pubmed]
  19. Analysis of the nucleotide sequence of 48 kbp of the variola major virus strain India-1967 located on the right terminus of the conservative genome region. Shchelkunov, S.N., Resenchuk, S.M., Totmenin, A.V., Blinov, V.M., Sandakhchiev, L.S. Virus Res. (1994) [Pubmed]
  20. Interferon- gamma -Mediated Antiviral Immunity against Orthopoxvirus Infection Is Provided by gamma delta T Cells. Agrati, C., Castilletti, C., De Santis, R., Cimini, E., Bordi, L., Malkovsky, M., Poccia, F., Capobianchi, M.R. J. Infect. Dis. (2006) [Pubmed]
  21. Inhibitors of the lipoxygenase pathway specifically block orthopoxvirus replication. Palumbo, G.J., Buller, R.M. Virology (1991) [Pubmed]
  22. Mapping and molecular characterization of a functional thymidine kinase from Amsacta moorei entomopoxvirus. Gruidl, M.E., Hall, R.L., Moyer, R.W. Virology (1992) [Pubmed]
  23. Analysis of the camelpox virus thymidine kinase gene. Binns, M., Mumford, J., Wernery, U. Br. Vet. J. (1992) [Pubmed]
  24. Soluble interferon-gamma receptors encoded by poxviruses. Alcamí, A., Smith, G.L. Comp. Immunol. Microbiol. Infect. Dis. (1996) [Pubmed]
  25. The cowpox virus serpin SPI-3 complexes with and inhibits urokinase-type and tissue-type plasminogen activators and plasmin. Turner, P.C., Baquero, M.T., Yuan, S., Thoennes, S.R., Moyer, R.W. Virology (2000) [Pubmed]
  26. Perforin is essential for control of ectromelia virus but not related poxviruses in mice. Müllbacher, A., Hla, R.T., Museteanu, C., Simon, M.M. J. Virol. (1999) [Pubmed]
  27. Human monkeypox infection: a family cluster in the midwestern United States. Sejvar, J.J., Chowdary, Y., Schomogyi, M., Stevens, J., Patel, J., Karem, K., Fischer, M., Kuehnert, M.J., Zaki, S.R., Paddock, C.D., Guarner, J., Shieh, W.J., Patton, J.L., Bernard, N., Li, Y., Olson, V.A., Kline, R.L., Loparev, V.N., Schmid, D.S., Beard, B., Regnery, R.R., Damon, I.K. J. Infect. Dis. (2004) [Pubmed]
  28. Belo Horizonte virus: a vaccinia-like virus lacking the A-type inclusion body gene isolated from infected mice. Trindade, G.S., da Fonseca, F.G., Marques, J.T., Diniz, S., Leite, J.A., De Bodt, S., Van der Peer, Y., Bonjardim, C.A., Ferreira, P.C., Kroon, E.G. J. Gen. Virol. (2004) [Pubmed]
  29. Efficacy of oral active ether lipid analogs of cidofovir in a lethal mousepox model. Buller, R.M., Owens, G., Schriewer, J., Melman, L., Beadle, J.R., Hostetler, K.Y. Virology (2004) [Pubmed]
  30. Characterization of antibodies to orthopoxviruses in human sera by radioimmunoassay. Walls, H.H., Ziegler, D.W., Nakano, J.H. Bull. World Health Organ. (1981) [Pubmed]
  31. Ocular complications of smallpox vaccination. Pepose, J.S., Margolis, T.P., LaRussa, P., Pavan-Langston, D. Am. J. Ophthalmol. (2003) [Pubmed]
 
WikiGenes - Universities