The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

IFNGR1  -  interferon gamma receptor 1

Homo sapiens

Synonyms: CD119, CDw119, IFN-gamma receptor 1, IFN-gamma-R1, IFNGR, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of IFNGR1

  • We confirmed that this region of the IFNGR1 promoter was responsive to TPA-induced signals by using a reporter construct whose promoter consisted of the -128 to -109 bp fragment and the minimal herpes simplex virus thymidine kinase promoter [1].
  • IFNGR1 gene promoter polymorphisms and susceptibility to cerebral malaria [2].
  • In conclusion, missense mutations of 705 A/G (Q214R), 1196 G/C (G378R), 1637 G/A (A525T), 1664 C/T (P534S) of the IL12RB1, 83 G/A (V14 M), and 1443 T/C (L467P) of the IFNGR1 encoding genes have no association with the susceptibility to lepromatous leprosy in the Korean population [3].
  • We therefore cannot find any evidence to suggest that IFNGR1, as a single dominant gene, contributes to susceptibility to periodontitis [4].
  • CONCLUSIONS: The -56T allele in the IFNGR1 promoter results in higher IFNGR1 transcriptional activity and represents a genetic risk factor for atopic cataracts [5].
 

High impact information on IFNGR1

 

Chemical compound and disease context of IFNGR1

 

Biological context of IFNGR1

  • A multipoint LOD score of 3.1 was obtained at IFNGR1, the gene that encodes chain 1 of the interferon-gamma (IFN-gamma) receptor [12].
  • These results suggest that in TPA-treated cells the binding of Sp1 to the TRE of the IFNGR1 promoter causes the up-regulation of this gene [1].
  • This gene is positioned on chromosome 6 in the vicinity of the IFNGR1 gene in a head-to-tail orientation [13].
  • Moreover, a peptide including Tyr-440, the Stat1 binding site of the human IFNGR1 chain, conferred the ability upon a synthetic receptor to activate Stat5 [14].
  • Reporter gene analyses of 5'-deletion constructs of the IFN-gamma receptor 1 gene (IFNGR1) promoter indicated that the critical region for control of transcription and the TPA-responsive element (TRE) were present in the -128 to -109 base pair (bp) region [1].
 

Anatomical context of IFNGR1

  • Contrary to this accepted dogma, here it is shown that IFNGR1 with a mutant (Y440F) motif, when stably expressed in IFNGR1-negative human fibroblasts at levels similar to wild type, can sustain a substantial IFN-gamma response [15].
  • Unraveling the mechanisms underlying this deficiency, we showed that IL-12 signaling in T cells is required to induce expression of costimulatory molecules and secretion of IL-12 by DCs and that IFNGR expression is required on both DCs and CD4(+) T cells to induce IL-12 secretion by DCs [16].
  • In untreated WISH cells, both IFNGR-1 and IFNGR-2 were constitutively localized within caveolae-like microdomains isolated from plasma membrane [17].
  • IFNGR-2 was highly expressed in PBL, muscle, spleen, thymus, and cecal tonsil, whereas its expression in cardiac muscle, cloacal bursa, liver, and kidney was comparatively low [18].
  • Here, we cloned the full-length cDNA of IFNGR-2 of Huiyang chicken using RACE. mRNA transcripts of IFNGR-2 were detected in peripheral blood leukocytes (PBL) and various organs using Northern blot analysis [18].
 

Associations of IFNGR1 with chemical compounds

 

Physical interactions of IFNGR1

  • The hybrid receptors contained the extracellular, human IFN-gamma (hIFN-gamma) binding domain of the hIFN-gamma R, either the human or murine transmembrane domain, and either the human or murine intracellular domain [23].
  • The IFN-gamma-RFc fusion protein exerted a 3-fold higher ligand binding affinity in binding competition studies in vitro compared with the monovalent extracellular IFN-gamma-R domain [24].
 

Regulatory relationships of IFNGR1

 

Other interactions of IFNGR1

  • In contrast, treatments that block clathrin-dependent endocytosis did not inhibit either activation or nuclear translocation of STAT1alpha or the nuclear translocation of IFN-gamma or IFNGR-1 [17].
  • Stat5 activation required the presence of tyrosine 420 (Tyr-420) in the murine IFNGR1 receptor chain, which also serves as the Stat1 binding site [14].
  • These data suggest that JAK1 associates with the IFN-gamma R prior to ligand binding [19].
  • On the other hand, IFNGR1 and IFNGR2 gene polymorphisms showed no association with atopic asthma [29].
  • In patients with unusual, severe infections caused by poorly pathogenic species of mycobacteria and salmonellae, genetic deficiencies have been identified in key genes in the type-1 cytokine pathway, especially in IFNGR1 and IL12RB1 [30].
 

Analytical, diagnostic and therapeutic context of IFNGR1

References

  1. Identification of a phorbol ester-responsive element in the interferon-gamma receptor 1 chain gene. Sakamoto, S., Taniguchi, T. J. Biol. Chem. (2001) [Pubmed]
  2. IFNGR1 gene promoter polymorphisms and susceptibility to cerebral malaria. Koch, O., Awomoyi, A., Usen, S., Jallow, M., Richardson, A., Hull, J., Pinder, M., Newport, M., Kwiatkowski, D. J. Infect. Dis. (2002) [Pubmed]
  3. Missense mutations of the interleukin-12 receptor beta 1(IL12RB1) and interferon-gamma receptor 1 (IFNGR1) genes are not associated with susceptibility to lepromatous leprosy in Korea. Lee, S.B., Kim, B.C., Jin, S.H., Park, Y.G., Kim, S.K., Kang, T.J., Chae, G.T. Immunogenetics (2003) [Pubmed]
  4. Polymorphisms in an interferon-gamma receptor-1 gene marker and susceptibility to periodontitis. Fraser, D.A., Loos, B.G., Boman, U., van Winkelhoff, A.J., van der Velden, U., Schenck, K., Dembic, Z. Acta Odontol. Scand. (2003) [Pubmed]
  5. Genetic polymorphisms in the promoter of the interferon gamma receptor 1 gene are associated with atopic cataracts. Matsuda, A., Ebihara, N., Kumagai, N., Fukuda, K., Ebe, K., Hirano, K., Sotozono, C., Tei, M., Hasegawa, K., Shimizu, M., Tamari, M., Namba, K., Ohno, S., Mizuki, N., Ikezawa, Z., Shirakawa, T., Hamuro, J., Kinoshita, S. Invest. Ophthalmol. Vis. Sci. (2007) [Pubmed]
  6. A mutation in the interferon-gamma-receptor gene and susceptibility to mycobacterial infection. Newport, M.J., Huxley, C.M., Huston, S., Hawrylowicz, C.M., Oostra, B.A., Williamson, R., Levin, M. N. Engl. J. Med. (1996) [Pubmed]
  7. MyD88-mediated stabilization of interferon-gamma-induced cytokine and chemokine mRNA. Sun, D., Ding, A. Nat. Immunol. (2006) [Pubmed]
  8. Soluble cytokine receptors are present in normal human urine. Novick, D., Engelmann, H., Wallach, D., Rubinstein, M. J. Exp. Med. (1989) [Pubmed]
  9. Partial interferon-gamma receptor 1 deficiency in a child with tuberculoid bacillus Calmette-Guérin infection and a sibling with clinical tuberculosis. Jouanguy, E., Lamhamedi-Cherradi, S., Altare, F., Fondanèche, M.C., Tuerlinckx, D., Blanche, S., Emile, J.F., Gaillard, J.L., Schreiber, R., Levin, M., Fischer, A., Hivroz, C., Casanova, J.L. J. Clin. Invest. (1997) [Pubmed]
  10. Indole-3-carbinol stimulates transcription of the interferon gamma receptor 1 gene and augments interferon responsiveness in human breast cancer cells. Chatterji, U., Riby, J.E., Taniguchi, T., Bjeldanes, E.L., Bjeldanes, L.F., Firestone, G.L. Carcinogenesis (2004) [Pubmed]
  11. Phosphoric acid entrapment leads to apparent protein heterogeneity. Fountoulakis, M., Vilbois, F., Oesterhelt, G., Vetter, W. Biotechnology (N.Y.) (1995) [Pubmed]
  12. Genomewide linkage analysis identifies polymorphism in the human interferon-gamma receptor affecting Helicobacter pylori infection. Thye, T., Burchard, G.D., Nilius, M., Müller-Myhsok, B., Horstmann, R.D. Am. J. Hum. Genet. (2003) [Pubmed]
  13. Identification, cloning, and characterization of a novel soluble receptor that binds IL-22 and neutralizes its activity. Kotenko, S.V., Izotova, L.S., Mirochnitchenko, O.V., Esterova, E., Dickensheets, H., Donnelly, R.P., Pestka, S. J. Immunol. (2001) [Pubmed]
  14. The Stat1 binding motif of the interferon-gamma receptor is sufficient to mediate Stat5 activation and its repression by SOCS3. Woldman, I., Varinou, L., Ramsauer, K., Rapp, B., Decker, T. J. Biol. Chem. (2001) [Pubmed]
  15. Signaling through a mutant IFN-gamma receptor. Costa-Pereira, A.P., Hermanns, H.M., Is'harc, H., Williams, T.M., Watling, D., Arulampalam, V., Newman, S.J., Heinrich, P.C., Kerr, I.M. J. Immunol. (2005) [Pubmed]
  16. T Cell-Dependent Activation of Dendritic Cells Requires IL-12 and IFN-{gamma} Signaling in T Cells. Miro, F., Nobile, C., Blanchard, N., Lind, M., Filipe-Santos, O., Fieschi, C., Chapgier, A., Vogt, G., de Beaucoudrey, L., Kumararatne, D.S., Le Deist, F., Casanova, J.L., Amigorena, S., Hivroz, C. J. Immunol. (2006) [Pubmed]
  17. Lipid microdomains are required sites for the selective endocytosis and nuclear translocation of IFN-gamma, its receptor chain IFN-gamma receptor-1, and the phosphorylation and nuclear translocation of STAT1alpha. Subramaniam, P.S., Johnson, H.M. J. Immunol. (2002) [Pubmed]
  18. A novel gene of beta chain of the IFN-gamma receptor of Huiyang chicken: cloning, distribution, and CD assay. Han, C.L., Zhang, W., Dong, H.T., Han, X., Wang, M. J. Interferon Cytokine Res. (2006) [Pubmed]
  19. Interferon-gamma induces tyrosine phosphorylation of interferon-gamma receptor and regulated association of protein tyrosine kinases, Jak1 and Jak2, with its receptor. Igarashi, K., Garotta, G., Ozmen, L., Ziemiecki, A., Wilks, A.F., Harpur, A.G., Larner, A.C., Finbloom, D.S. J. Biol. Chem. (1994) [Pubmed]
  20. TGF-beta1 suppresses IFN-gamma-induced NO production in macrophages by suppressing STAT1 activation and accelerating iNOS protein degradation. Takaki, H., Minoda, Y., Koga, K., Takaesu, G., Yoshimura, A., Kobayashi, T. Genes Cells (2006) [Pubmed]
  21. Antiblastic chemotherapy drugs up-modulate interferon-gamma receptor expression on human malignant T cells. Novelli, F., Allione, A., Bernabei, P., Rigamonti, L., Forni, G. Cancer Detect. Prev. (1997) [Pubmed]
  22. Prostaglandin E2 selectively increases interferon gamma receptor expression on human CD8+ lymphocytes. elMasry, M.N., Rich, R.R. J. Clin. Invest. (1989) [Pubmed]
  23. The extracellular domain of the human interferon gamma receptor interacts with a species-specific signal transducer. Gibbs, V.C., Williams, S.R., Gray, P.W., Schreiber, R.D., Pennica, D., Rice, G., Goeddel, D.V. Mol. Cell. Biol. (1991) [Pubmed]
  24. A bivalent immunoadhesin of the human interferon-gamma receptor is an effective inhibitor of IFN-gamma activity. Moosmayer, D., Gerlach, E., Hauff, R., Becker, P., Brocks, B., Pfizenmaier, K. J. Interferon Cytokine Res. (1995) [Pubmed]
  25. The Jak kinases differentially associate with the alpha and beta (accessory factor) chains of the interferon gamma receptor to form a functional receptor unit capable of activating STAT transcription factors. Sakatsume, M., Igarashi, K., Winestock, K.D., Garotta, G., Larner, A.C., Finbloom, D.S. J. Biol. Chem. (1995) [Pubmed]
  26. Tumor necrosis factor-alpha and IL-6 up-regulate IFN-gamma receptor gene expression in human monocytic THP-1 cells by transcriptional and post-transcriptional mechanisms. Sanceau, J., Merlin, G., Wietzerbin, J. J. Immunol. (1992) [Pubmed]
  27. Abnormal levels of interferon-gamma receptors in active multiple sclerosis are normalized by IFN-beta therapy: implications for control of apoptosis. Ahn, J., Feng, X., Patel, N., Dhawan, N., Reder, A.T. Front. Biosci. (2004) [Pubmed]
  28. Altered synthesis of interferon-gamma and expression of interferon-gamma receptor by peripheral blood mononuclear cells from patients with IgA nephropathy and non-IgA proliferative glomerulonephritis. Yano, N., Endoh, M., Naka, R., Takemura, F., Nomoto, Y., Sakai, H. J. Clin. Immunol. (1996) [Pubmed]
  29. Association of IFN-gamma and IFN regulatory factor 1 polymorphisms with childhood atopic asthma. Nakao, F., Ihara, K., Kusuhara, K., Sasaki, Y., Kinukawa, N., Takabayashi, A., Nishima, S., Hara, T. J. Allergy Clin. Immunol. (2001) [Pubmed]
  30. Severe Mycobacterium bovis BCG infections in a large series of novel IL-12 receptor beta1 deficient patients and evidence for the existence of partial IL-12 receptor beta1 deficiency. Lichtenauer-Kaligis, E.G., de Boer, T., Verreck, F.A., van Voorden, S., Hoeve, M.A., van de Vosse, E., Ersoy, F., Tezcan, I., van Dissel, J.T., Sanal, O., Ottenhoff, T.H. Eur. J. Immunol. (2003) [Pubmed]
  31. Human interferon gamma receptor 1 (IFNGR1) gene maps to chromosome region 6q23-6q24. Le Coniat, M., Alcaide-Loridan, C., Fellous, M., Berger, R. Hum. Genet. (1989) [Pubmed]
  32. Interferon-gamma and interferon-gamma receptor 1 and 2 gene polymorphisms and restenosis following coronary stenting. Tiroch, K., von Beckerath, N., Koch, W., Lengdobler, J., Joost, A., Schömig, A., Kastrati, A. Atherosclerosis (2005) [Pubmed]
  33. Gamma interferon signaling: insights to development of interferon mimetics. Johnson, H.M., Ahmed, C.M. Cell. Mol. Biol. (Noisy-le-grand) (2006) [Pubmed]
 
WikiGenes - Universities