The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Mole Rats

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Psychiatry related information on Mole Rats

 

High impact information on Mole Rats

 

Chemical compound and disease context of Mole Rats

  • Since all three mole-rat species are able to entrain their locomotor activity to an external light source, light must reach the SCN, suggesting a functional circadian clock [7].
 

Biological context of Mole Rats

  • It also directed lens expression in Xenopus laevis transgenes, as did the HspB2 promoter of rat or blind mole rat [8].
  • In our attempt to understand the role of the eye in the blind mole-rat, we now describe the cloning, sequencing, and expression of the cDNA of alpha-B-Crystallin from two species of Spalax (S. galili and S. Judaei, with diploid chromosome numbers 2n=52 and 60, respectively) [9].
  • A molecular phylogeny was obtained by separate and combined analyses of the mitochondrial 12S rRNA and intron I of the nuclear transthyretin gene for chromosomally and geographically diverse populations of Cryptomys [10].
  • Major histocompatibility complex of the mole-rat. I. Serological and biochemical analysis [11].
  • Equilibrium 125I-melatonin binding studies indicated high- and low-affinity melatonin binding sites in the female (apparent Kd 10 pM and 2.4 nM, respectively) and low-affinity sites in the male (apparent Kd 2.6 nM) mole rat [12].
 

Anatomical context of Mole Rats

  • We explored, by comparing mole rats with white rats, whether and how this is related to adaptations in the design of the respiratory system, which determines the transfer of O2 from the lung to muscle mitochondria [13].
  • Light is integrated effectively in the suprachiasmatic nucleus of the Cape mole-rat (Georychus capensis), and Fos expression is gated according to the phase of the circadian clock [14].
  • These results indicate for the first time the presence of GTP-sensitive melatonin binding sites in the blind mole rat harderian gland, and suggest that their expression is under control of sex steroids [12].
  • The present paper details our findings following immunohistochemical examination of the midbrain and pons of the Highveld molerat (Cryptomys hottentotus) using antibodies for vesicular acetylcholine transporter (cholinergic neurons), tyrosine hydroxylase (dopaminergic and noradrenergic neurons), and serotonin (serotonergic neurons) [15].
  • 3. Km pyruvate of lactate dehydrogenase in heart muscle had the same temperature dependence in the mole rat and mouse [16].
 

Associations of Mole Rats with chemical compounds

  • Incorporation of 10 mole% rat brain synaptic gangliosides into the PC vesicles enhanced the effect of ethanol by several-fold [17].
  • The day- and night-time levels of plasma melatonin were measured in adult male and female highveld mole-rats, Cryptomys hottentotus pretoriae [18].
  • These data confirm that naturally vitamin D-deficient mole rats can convert vitamin D3 to the hormone, 1,25(OH)2D3.(ABSTRACT TRUNCATED AT 250 WORDS)[19]
  • It is concluded that, unlike in the hot-plate test, it is possible to demonstrate the analgesic effects of morphine in the naked mole-rat, in the formalin test [20].
  • Circulating basal concentrations of LH as well as LH levels measured in response to a single exogenous GnRH challenge were not significantly different between the reproductive and non-reproductive groups of either sex, suggest the absence of a physiologically well-defined suppression of reproduction in subordinate common mole-rats [21].
 

Gene context of Mole Rats

  • Mouse myoglobin differs from that of mole-rat (another myomorph) at 17 positions, whereas casiragua and mouse differ at 22 positions [22].
  • None of the antioxidants changed with age in mole-rats. cGPx activity of NMRs was 70-times lower (p < 0.0001) than in mice, and resembled that of cGPx knock-out animals [23].
  • Further studies are needed to determine whether VEGF from the subterranean mole rat Spalax VEGF is superior to VEGF from other species [4].
  • The lens protein alpha-B-crystallin of the blind subterranean mole-rat: high homology with sighted mammals [9].
  • The deduced sequence for the mature GH from mole rat differs from that of pig GH (thought to be identical to the ancestral placental mammal GH sequence) at 7 residues and from rat, mouse and hamster GHs at 9 to 12 residues [24].
 

Analytical, diagnostic and therapeutic context of Mole Rats

References

  1. 6-Sulphatoxymelatonin secretion in different locomotor activity types of the blind mole rat Spalax ehrenbergi. Ben-Shlomo, R., Nevo, E., Ritte, U., Steinlechner, S., Klante, G. J. Pineal Res. (1996) [Pubmed]
  2. Adaptive evolution of heparanase in hypoxia-tolerant Spalax: gene cloning and identification of a unique splice variant. Nasser, N.J., Nevo, E., Shafat, I., Ilan, N., Vlodavsky, I., Avivi, A. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  3. Hypoxic stress tolerance of the blind subterranean mole rat: expression of erythropoietin and hypoxia-inducible factor 1 alpha. Shams, I., Avivi, A., Nevo, E. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  4. Restoration of blood flow by using continuous perimuscular infiltration of plasmid DNA encoding subterranean mole rat Spalax ehrenbergi VEGF. Roguin, A., Avivi, A., Nitecki, S., Rubinstein, I., Levy, N.S., Abassi, Z.A., Resnick, M.B., Lache, O., Melamed-Frank, M., Joel, A., Hoffman, A., Nevo, E., Levy, A.P. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  5. Adaptive evolution of small heat shock protein/alpha B-crystallin promoter activity of the blind subterranean mole rat, Spalax ehrenbergi. Hough, R.B., Avivi, A., Davis, J., Joel, A., Nevo, E., Piatigorsky, J. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  6. Biological clock in total darkness: the Clock/MOP3 circadian system of the blind subterranean mole rat. Avivi, A., Albrecht, U., Oster, H., Joel, A., Beiles, A., Nevo, E. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  7. Circadian rhythms of locomotor activity in solitary and social species of African mole-rats (family: Bathyergidae). Oosthuizen, M.K., Cooper, H.M., Bennett, N.C. J. Biol. Rhythms (2003) [Pubmed]
  8. Sequence and functional conservation of the intergenic region between the head-to-head genes encoding the small heat shock proteins alphaB-crystallin and HspB2 in the mammalian lineage. Doerwald, L., van Rheede, T., Dirks, R.P., Madsen, O., Rexwinkel, R., van Genesen, S.T., Martens, G.J., de Jong, W.W., Lubsen, N.H. J. Mol. Evol. (2004) [Pubmed]
  9. The lens protein alpha-B-crystallin of the blind subterranean mole-rat: high homology with sighted mammals. Avivi, A., Joel, A., Nevo, E. Gene (2001) [Pubmed]
  10. Molecular phylogenetics and taxonomy of the African mole-rats, genus Cryptomys and the new genus Coetomys Gray, 1864. Ingram, C.M., Burda, H., Honeycutt, R.L. Mol. Phylogenet. Evol. (2004) [Pubmed]
  11. Major histocompatibility complex of the mole-rat. I. Serological and biochemical analysis. Nizetić, D., Figueroa, F., Müller, H.J., Arden, B., Nevo, E., Klein, J. Immunogenetics (1984) [Pubmed]
  12. Putative melatonin receptors in the blind mole rat harderian gland. Gilad, E., Shanas, U., Terkel, J., Zisapel, N. J. Exp. Zool. (1997) [Pubmed]
  13. Working underground: respiratory adaptations in the blind mole rat. Widmer, H.R., Hoppeler, H., Nevo, E., Taylor, C.R., Weibel, E.R. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  14. Fos expression in the suprachiasmatic nucleus in response to light stimulation in a solitary and social species of African mole-rat (family Bathyergidae). Oosthuizen, M.K., Bennett, N.C., Cooper, H.M. Neuroscience (2005) [Pubmed]
  15. Nuclear parcellation of certain immunohistochemically identifiable neuronal systems in the midbrain and pons of the Highveld molerat (Cryptomys hottentotus). Da Silva, J.N., Fuxe, K., Manger, P.R. J. Chem. Neuroanat. (2006) [Pubmed]
  16. Tissue metabolism and enzyme activities in the rodent Heterocephalus glaber, a poor temperature regulator. Gesser, H., Johansen, K., Maloiy, G.M. Comp. Biochem. Physiol., B (1977) [Pubmed]
  17. Gangliosides enhance the membrane actions of ethanol and pentobarbital. Harris, R.A., Groh, G.I., Baxter, D.M., Hitzemann, R.J. Mol. Pharmacol. (1984) [Pubmed]
  18. The endogenous rhythm of plasma melatonin and its regulation by light in the highveld mole-rat (Cryptomys hottentotus pretoriae): a microphthalmic, seasonally breeding rodent. Gutjahr, G.H., van Rensburg, L.J., Malpaux, B., Richter, T.A., Bennett, N.C. J. Pineal Res. (2004) [Pubmed]
  19. Vitamin D hydroxylases and their regulation in a naturally vitamin D-deficient subterranean mammal, the naked mole rat (Heterocephalus glaber). Buffenstein, R., Sergeev, I.N., Pettifor, J.M. J. Endocrinol. (1993) [Pubmed]
  20. The formalin test in the naked mole-rat (Heterocephalus glaber): analgesic effects of morphine, nefopam and paracetamol. Kanui, T.I., Karim, F., Towett, P.K. Brain Res. (1993) [Pubmed]
  21. Circulating LH levels and the response to exogenous GnRH in the common mole-rat: implications for reproductive regulation in this social, seasonal breeding species. Spinks, A.C., Bennett, N.C., Faulkes, C.G., Jarvis, J.U. Hormones and behavior. (2000) [Pubmed]
  22. The myoglobin of rodents Proechimys guairae (casiragua) and Mus musculus (house mouse). Harris, D.E., Gurnett, A.M., Lehmann, H., Joysey, K.A. FEBS Lett. (1985) [Pubmed]
  23. Antioxidants do not explain the disparate longevity between mice and the longest-living rodent, the naked mole-rat. Andziak, B., O'Connor, T.P., Buffenstein, R. Mech. Ageing Dev. (2005) [Pubmed]
  24. Cloning and characterisation of the gene encoding mole rat (Spalax ehrenbergi) growth hormone. Lioupis, A., Nevo, E., Wallis, M. J. Mol. Endocrinol. (1999) [Pubmed]
  25. Circadian genes in a blind subterranean mammal III: molecular cloning and circadian regulation of cryptochrome genes in the blind subterranean mole rat, Spalax ehrenbergi superspecies. Avivi, A., Oster, H., Joel, A., Beiles, A., Albrecht, U., Nevo, E. J. Biol. Rhythms (2004) [Pubmed]
  26. The eye lens protein alphaA-crystallin of the blind mole rat Spalax ehrenbergi: effects of altered functional constraints. Smulders, R.H., van Dijk, M.A., Hoevenaars, S., Lindner, R.A., Carver, J.A., de Jong, W.W. Exp. Eye Res. (2002) [Pubmed]
  27. Ventricular electrophysiological properties: is interspecies variability related to thyroid state? Binah, O., Arieli, R., Beck, R., Rosen, M.R., Palti, Y. Am. J. Physiol. (1987) [Pubmed]
 
WikiGenes - Universities