The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Flavivirus


High impact information on Flavivirus

  • The positions of these sites have demonstrated that E2 forms the protruding spikes and that E1 must be long and narrow, lying flat on the viral surface, forming an icosahedral scaffold analogous to the arrangement of the E glycoprotein in flaviviruses [6].
  • Evidence is presented that M phi complement receptors (CR3) mediate IgM-dependent enhancement of flavivirus replication in the presence of complement [7].
  • An RNA cap (nucleoside-2'-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization [8].
  • Flavivirus premembrane protein cleavage and spike heterodimer secretion require the function of the viral proteinase NS3 [9].
  • These detailed atomic interactions provide the first structural insights into the inhibition of a viral enzyme by ribavirin 5'-triphosphate, as well as the basis for rational drug design of antiviral agents with improved specificity against the emerging flaviviruses [10].

Chemical compound and disease context of Flavivirus

  • The RNA-dependent RNA polymerase NS5 of flaviviruses presents a characteristic motif of S-adenosyl-L-methionine-dependent methyltransferases at its N-terminus, and polymerase motifs at its C-terminus [8].
  • We have undertaken a mutational analysis of the region of NS3 which contains the catalytic serine, five putative substrate binding residues, and several residues that are highly conserved among flavivirus proteases and among all serine proteases [11].
  • The ts lesion of ts25 was shown to be due to a single alanine substitution for Arg-299, a residue which is conserved among flaviviruses [12].
  • The data presented thus suggest the existence of structurally related interactions of the flavivirus and alphavirus fusion proteins with cholesterol in the molecular processes required for fusion but, at the same time, point to significant differences between the class II fusion machineries of these viruses [13].
  • Characterization of the purified HCV NTPase activity showed that it exhibited reaction condition optima with respect to pH, MgCl2, and salt identical to those of the representative pestivirus and flavivirus enzymes [14].

Biological context of Flavivirus


Anatomical context of Flavivirus


Gene context of Flavivirus


Analytical, diagnostic and therapeutic context of Flavivirus

  • A new vaccination principle against flaviviruses, based on a tick-borne encephalitis virus (TBEV) self-replicating noninfectious RNA vaccine that produces subviral particles, has recently been introduced (R. M. Kofler, J. H. Aberle, S. W. Aberle, S. L. Allison, F. X. Heinz, and C. W. Mandl, Proc. Natl. Acad. Sci. USA 7:1951-1956, 2004) [30].
  • The flavivirus nonstructural glycoprotein NS1 is highly conserved and contains two N-linked glycosylation sites which are both utilized for addition of oligosaccharides during replication in cell culture [31].
  • The Focus Technologies IgM ELISA had a sensitivity and a specificity of 99.3% (excluding the non-WNV flavivirus sera) [32].
  • Gene mapping and positive identification of the non-structural proteins NS2A, NS2B, NS3, NS4B and NS5 of the flavivirus Kunjin and their cleavage sites [33].
  • The reverse-transcriptase PCR (RT-PCR) successfully amplified flavivirus sequences from cell cultures, frozen brain tissue, and formalin-fixed, paraffin-embedded brain tissue [34].


  1. Genetic organization and diversity of the hepatitis C virus. Choo, Q.L., Richman, K.H., Han, J.H., Berger, K., Lee, C., Dong, C., Gallegos, C., Coit, D., Medina-Selby, R., Barr, P.J. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  2. Positional cloning of the murine flavivirus resistance gene. Perelygin, A.A., Scherbik, S.V., Zhulin, I.B., Stockman, B.M., Li, Y., Brinton, M.A. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  3. Dynamic effects of antibody-dependent enhancement on the fitness of viruses. Cummings, D.A., Schwartz, I.B., Billings, L., Shaw, L.B., Burke, D.S. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  4. The interdomain region of dengue NS5 protein that binds to the viral helicase NS3 contains independently functional importin beta 1 and importin alpha/beta-recognized nuclear localization signals. Brooks, A.J., Johansson, M., John, A.V., Xu, Y., Jans, D.A., Vasudevan, S.G. J. Biol. Chem. (2002) [Pubmed]
  5. Hepatitis C: looking at a virus that hasn't been seen. Overby, L.R. Gut (1993) [Pubmed]
  6. Locations of carbohydrate sites on alphavirus glycoproteins show that E1 forms an icosahedral scaffold. Pletnev, S.V., Zhang, W., Mukhopadhyay, S., Fisher, B.R., Hernandez, R., Brown, D.T., Baker, T.S., Rossmann, M.G., Kuhn, R.J. Cell (2001) [Pubmed]
  7. Complement receptor mediates enhanced flavivirus replication in macrophages. Cardosa, M.J., Porterfield, J.S., Gordon, S. J. Exp. Med. (1983) [Pubmed]
  8. An RNA cap (nucleoside-2'-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. Egloff, M.P., Benarroch, D., Selisko, B., Romette, J.L., Canard, B. EMBO J. (2002) [Pubmed]
  9. Flavivirus premembrane protein cleavage and spike heterodimer secretion require the function of the viral proteinase NS3. Lobigs, M. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  10. A structural basis for the inhibition of the NS5 dengue virus mRNA 2'-O-methyltransferase domain by ribavirin 5'-triphosphate. Benarroch, D., Egloff, M.P., Mulard, L., Guerreiro, C., Romette, J.L., Canard, B. J. Biol. Chem. (2004) [Pubmed]
  11. Mutagenesis of the NS3 protease of dengue virus type 2. Valle, R.P., Falgout, B. J. Virol. (1998) [Pubmed]
  12. Genetic analysis of the yellow fever virus NS1 protein: identification of a temperature-sensitive mutation which blocks RNA accumulation. Muylaert, I.R., Galler, R., Rice, C.M. J. Virol. (1997) [Pubmed]
  13. Involvement of lipids in different steps of the flavivirus fusion mechanism. Stiasny, K., Koessl, C., Heinz, F.X. J. Virol. (2003) [Pubmed]
  14. Hepatitis C virus NS3 protein polynucleotide-stimulated nucleoside triphosphatase and comparison with the related pestivirus and flavivirus enzymes. Suzich, J.A., Tamura, J.K., Palmer-Hill, F., Warrener, P., Grakoui, A., Rice, C.M., Feinstone, S.M., Collett, M.S. J. Virol. (1993) [Pubmed]
  15. Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. Bressanelli, S., Stiasny, K., Allison, S.L., Stura, E.A., Duquerroy, S., Lescar, J., Heinz, F.X., Rey, F.A. EMBO J. (2004) [Pubmed]
  16. Structure of the Flavivirus helicase: implications for catalytic activity, protein interactions, and proteolytic processing. Wu, J., Bera, A.K., Kuhn, R.J., Smith, J.L. J. Virol. (2005) [Pubmed]
  17. Analysis of murine major histocompatibility complex class II-restricted T-cell responses to the flavivirus Kunjin by using vaccinia virus expression. Kulkarni, A.B., Müllbacher, A., Parrish, C.R., Westaway, E.G., Coia, G., Blanden, R.V. J. Virol. (1992) [Pubmed]
  18. Langat flavivirus protease NS3 binds caspase-8 and induces apoptosis. Prikhod'ko, G.G., Prikhod'ko, E.A., Pletnev, A.G., Cohen, J.I. J. Virol. (2002) [Pubmed]
  19. Replication of a cytopathic strain of bovine viral diarrhea virus activates PERK and induces endoplasmic reticulum stress-mediated apoptosis of MDBK cells. Jordan, R., Wang, L., Graczyk, T.M., Block, T.M., Romano, P.R. J. Virol. (2002) [Pubmed]
  20. Proteolytic activation of tick-borne encephalitis virus by furin. Stadler, K., Allison, S.L., Schalich, J., Heinz, F.X. J. Virol. (1997) [Pubmed]
  21. Analysis of murine CD8(+) T-cell clones specific for the Dengue virus NS3 protein: flavivirus cross-reactivity and influence of infecting serotype. Spaulding, A.C., Kurane, I., Ennis, F.A., Rothman, A.L. J. Virol. (1999) [Pubmed]
  22. Differential induction of antiviral effects against West Nile virus in primary mouse macrophages derived from flavivirus-susceptible and congenic resistant mice by alpha/beta interferon and poly(I-C). Pantelic, L., Sivakumaran, H., Urosevic, N. J. Virol. (2005) [Pubmed]
  23. Early E-selectin, VCAM-1, ICAM-1, and late major histocompatibility complex antigen induction on human endothelial cells by flavivirus and comodulation of adhesion molecule expression by immune cytokines. Shen, J., T-To, S.S., Schrieber, L., King, N.J. J. Virol. (1997) [Pubmed]
  24. Monoclonal antibodies to the structural glycoprotein of tick-borne encephalitis virus. Heinz, F.X., Berger, R., Majdic, O., Knapp, W., Kunz, C. Infect. Immun. (1982) [Pubmed]
  25. Inhibition of interferon-stimulated JAK-STAT signaling by a tick-borne flavivirus and identification of NS5 as an interferon antagonist. Best, S.M., Morris, K.L., Shannon, J.G., Robertson, S.J., Mitzel, D.N., Park, G.S., Boer, E., Wolfinbarger, J.B., Bloom, M.E. J. Virol. (2005) [Pubmed]
  26. Cytochrome P450 2A6: a new hepatic autoantigen in patients with chronic hepatitis C virus infection. Dalekos, G.N., Obermayer-Straub, P., Bartels, M., Maeda, T., Kayser, A., Braun, S., Loges, S., Schmidt, E., Gershwin, M.E., Manns, M.P. J. Hepatol. (2003) [Pubmed]
  27. Expression of immunoglobulin superfamily cell adhesion molecules on murine embryonic stem cells. Tian, L., Catt, J.W., O'Neill, C., King, N.J. Biol. Reprod. (1997) [Pubmed]
  28. Genetic characterization of Yokose virus, a flavivirus isolated from the bat in Japan. Tajima, S., Takasaki, T., Matsuno, S., Nakayama, M., Kurane, I. Virology (2005) [Pubmed]
  29. Genome sequence analysis of Tamana bat virus and its relationship with the genus Flavivirus. de Lamballerie, X., Crochu, S., Billoir, F., Neyts, J., de Micco, P., Holmes, E.C., Gould, E.A. J. Gen. Virol. (2002) [Pubmed]
  30. Humoral and cellular immune response to RNA immunization with flavivirus replicons derived from tick-borne encephalitis virus. Aberle, J.H., Aberle, S.W., Kofler, R.M., Mandl, C.W. J. Virol. (2005) [Pubmed]
  31. Mutagenesis of the N-linked glycosylation sites of the yellow fever virus NS1 protein: effects on virus replication and mouse neurovirulence. Muylaert, I.R., Chambers, T.J., Galler, R., Rice, C.M. Virology (1996) [Pubmed]
  32. Performance of immunoglobulin G (IgG) and IgM enzyme-linked immunosorbent assays using a West Nile virus recombinant antigen (preM/E) for detection of West Nile virus- and other flavivirus-specific antibodies. Hogrefe, W.R., Moore, R., Lape-Nixon, M., Wagner, M., Prince, H.E. J. Clin. Microbiol. (2004) [Pubmed]
  33. Gene mapping and positive identification of the non-structural proteins NS2A, NS2B, NS3, NS4B and NS5 of the flavivirus Kunjin and their cleavage sites. Speight, G., Coia, G., Parker, M.D., Westaway, E.G. J. Gen. Virol. (1988) [Pubmed]
  34. Detection of flaviviruses by reverse-transcriptase polymerase chain reaction. Eldadah, Z.A., Asher, D.M., Godec, M.S., Pomeroy, K.L., Goldfarb, L.G., Feinstone, S.M., Levitan, H., Gibbs, C.J., Gajdusek, D.C. J. Med. Virol. (1991) [Pubmed]
WikiGenes - Universities