The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

SP_1923  -  pneumolysin

Streptococcus pneumoniae TIGR4

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of SP_1923

 

High impact information on SP_1923

 

Chemical compound and disease context of SP_1923

 

Biological context of SP_1923

 

Anatomical context of SP_1923

 

Associations of SP_1923 with chemical compounds

  • Magic angle spinning and wideline static (31)P NMR have been used in combination with freeze-fracture electron microscopy to investigate the effect of pneumolysin on fully hydrated model membranes containing cholesterol and phosphatidylcholine and dicetyl phosphate (10:10:1 molar ratio) [6].
  • These studies add to the foundation of knowledge of classical S. pneumoniae virulence factors such as polysaccharide capsule and pneumolysin, which have well-documented roles in pathogenesis [19].
  • Western blot analysis demonstrated that the mutant failed to express pneumolysin and the choline-binding proteins LytA, CbpA, CbpE, CbpF, CbpJ [20].
  • The inhibition of toxin self-interaction by derivatization of the single cysteine residue in pneumolysin with the thiol-active agent dithio (bis)nitrobenzoic acid indicates that self-interaction is mediated by the fourth domain of the protein, which has a fold similar to other proteins known to self-associate [21].
  • Inactive toxin appeared to bind to the liposome but not to cause membrane alteration; subsequent activation of pneumolysin in situ brought about changes in liposome structure similar to those seen in the presence of active toxin [22].
 

Other interactions of SP_1923

 

Analytical, diagnostic and therapeutic context of SP_1923

References

  1. Two structural transitions in membrane pore formation by pneumolysin, the pore-forming toxin of Streptococcus pneumoniae. Gilbert, R.J., Jiménez, J.L., Chen, S., Tickle, I.J., Rossjohn, J., Parker, M., Andrew, P.W., Saibil, H.R. Cell (1999) [Pubmed]
  2. Dual function of pneumolysin in the early pathogenesis of murine pneumococcal pneumonia. Rubins, J.B., Charboneau, D., Paton, J.C., Mitchell, T.J., Andrew, P.W., Janoff, E.N. J. Clin. Invest. (1995) [Pubmed]
  3. Pneumococcal pneumolysin and H(2)O(2) mediate brain cell apoptosis during meningitis. Braun, J.S., Sublett, J.E., Freyer, D., Mitchell, T.J., Cleveland, J.L., Tuomanen, E.I., Weber, J.R. J. Clin. Invest. (2002) [Pubmed]
  4. Structural basis of pore formation by the bacterial toxin pneumolysin. Tilley, S.J., Orlova, E.V., Gilbert, R.J., Andrew, P.W., Saibil, H.R. Cell (2005) [Pubmed]
  5. Competence-programmed predation of noncompetent cells in the human pathogen Streptococcus pneumoniae: genetic requirements. Guiral, S., Mitchell, T.J., Martin, B., Claverys, J.P. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  6. Structural analysis of the protein/lipid complexes associated with pore formation by the bacterial toxin pneumolysin. Bonev, B.B., Gilbert, R.J., Andrew, P.W., Byron, O., Watts, A. J. Biol. Chem. (2001) [Pubmed]
  7. Purification and immunogenicity of genetically obtained pneumolysin toxoids and their conjugation to Streptococcus pneumoniae type 19F polysaccharide. Paton, J.C., Lock, R.A., Lee, C.J., Li, J.P., Berry, A.M., Mitchell, T.J., Andrew, P.W., Hansman, D., Boulnois, G.J. Infect. Immun. (1991) [Pubmed]
  8. Reduced virulence of a defined pneumolysin-negative mutant of Streptococcus pneumoniae. Berry, A.M., Yother, J., Briles, D.E., Hansman, D., Paton, J.C. Infect. Immun. (1989) [Pubmed]
  9. Reduced release of pneumolysin by Streptococcus pneumoniae in vitro and in vivo after treatment with nonbacteriolytic antibiotics in comparison to ceftriaxone. Spreer, A., Kerstan, H., Böttcher, T., Gerber, J., Siemer, A., Zysk, G., Mitchell, T.J., Eiffert, H., Nau, R. Antimicrob. Agents Chemother. (2003) [Pubmed]
  10. The autolytic enzyme LytA of Streptococcus pneumoniae is not responsible for releasing pneumolysin. Balachandran, P., Hollingshead, S.K., Paton, J.C., Briles, D.E. J. Bacteriol. (2001) [Pubmed]
  11. Additive inhibition of complement deposition by pneumolysin and PspA facilitates Streptococcus pneumoniae septicemia. Yuste, J., Botto, M., Paton, J.C., Holden, D.W., Brown, J.S. J. Immunol. (2005) [Pubmed]
  12. Complement activation and antibody binding by pneumolysin via a region of the toxin homologous to a human acute-phase protein. Mitchell, T.J., Andrew, P.W., Saunders, F.K., Smith, A.N., Boulnois, G.J. Mol. Microbiol. (1991) [Pubmed]
  13. Switch from planktonic to sessile life: a major event in pneumococcal pathogenesis. Oggioni, M.R., Trappetti, C., Kadioglu, A., Cassone, M., Iannelli, F., Ricci, S., Andrew, P.W., Pozzi, G. Mol. Microbiol. (2006) [Pubmed]
  14. The molecular mechanism of pneumolysin, a virulence factor from Streptococcus pneumoniae. Rossjohn, J., Gilbert, R.J., Crane, D., Morgan, P.J., Mitchell, T.J., Rowe, A.J., Andrew, P.W., Paton, J.C., Tweten, R.K., Parker, M.W. J. Mol. Biol. (1998) [Pubmed]
  15. Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Malley, R., Henneke, P., Morse, S.C., Cieslewicz, M.J., Lipsitch, M., Thompson, C.M., Kurt-Jones, E., Paton, J.C., Wessels, M.R., Golenbock, D.T. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  16. Epithelial Cells Are Sensitive Detectors of Bacterial Pore-forming Toxins. Ratner, A.J., Hippe, K.R., Aguilar, J.L., Bender, M.H., Nelson, A.L., Weiser, J.N. J. Biol. Chem. (2006) [Pubmed]
  17. Oxidative inactivation of pneumolysin by the myeloperoxidase system and stimulated human neutrophils. Clark, R.A. J. Immunol. (1986) [Pubmed]
  18. Pneumolysin-induced lung injury is independent of leukocyte trafficking into the alveolar space. Maus, U.A., Srivastava, M., Paton, J.C., Mack, M., Everhart, M.B., Blackwell, T.S., Christman, J.W., Schlöndorff, D., Seeger, W., Lohmeyer, J. J. Immunol. (2004) [Pubmed]
  19. From nose to lung: the regulation behind Streptococcus pneumoniae virulence factors. Hava, D.L., LeMieux, J., Camilli, A. Mol. Microbiol. (2003) [Pubmed]
  20. Regulation of growth inhibition at high temperature, autolysis, transformation and adherence in Streptococcus pneumoniae by clpC. Charpentier, E., Novak, R., Tuomanen, E. Mol. Microbiol. (2000) [Pubmed]
  21. Self-interaction of pneumolysin, the pore-forming protein toxin of Streptococcus pneumoniae. Gilbert, R.J., Rossjohn, J., Parker, M.W., Tweten, R.K., Morgan, P.J., Mitchell, T.J., Errington, N., Rowe, A.J., Andrew, P.W., Byron, O. J. Mol. Biol. (1998) [Pubmed]
  22. Studies on the structure and mechanism of a bacterial protein toxin by analytical ultracentrifugation and small-angle neutron scattering. Gilbert, R.J., Heenan, R.K., Timmins, P.A., Gingles, N.A., Mitchell, T.J., Rowe, A.J., Rossjohn, J., Parker, M.W., Andrew, P.W., Byron, O. J. Mol. Biol. (1999) [Pubmed]
  23. Contribution of the ATP-dependent protease ClpCP to the autolysis and virulence of Streptococcus pneumoniae. Ibrahim, Y.M., Kerr, A.R., Silva, N.A., Mitchell, T.J. Infect. Immun. (2005) [Pubmed]
  24. Immunizations with pneumococcal surface protein A and pneumolysin are protective against pneumonia in a murine model of pulmonary infection with Streptococcus pneumoniae. Briles, D.E., Hollingshead, S.K., Paton, J.C., Ades, E.W., Novak, L., van Ginkel, F.W., Benjamin, W.H. J. Infect. Dis. (2003) [Pubmed]
  25. Decreased virulence of a pneumolysin-deficient strain of Streptococcus pneumoniae in murine meningitis. Wellmer, A., Zysk, G., Gerber, J., Kunst, T., Von Mering, M., Bunkowski, S., Eiffert, H., Nau, R. Infect. Immun. (2002) [Pubmed]
  26. Diagnosis of pneumococcal pneumonia by polymerase chain reaction (PCR) in whole blood: a prospective clinical study. Lorente, M.L., Falguera, M., Nogués, A., González, A.R., Merino, M.T., Caballero, M.R. Thorax (2000) [Pubmed]
 
WikiGenes - Universities