The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Interspersed Repetitive Sequences

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Interspersed Repetitive Sequences

 

High impact information on Interspersed Repetitive Sequences

 

Biological context of Interspersed Repetitive Sequences

 

Anatomical context of Interspersed Repetitive Sequences

 

Associations of Interspersed Repetitive Sequences with chemical compounds

  • Members of the large serine resolvase family of site-specific recombinases are responsible for the movement of several mobile genetic elements; however, little is known regarding the structure or function of these proteins [19].
  • SCCmec is a novel class of mobile genetic element that is composed of the mec gene complex encoding methicillin resistance and the ccr gene complex that encodes recombinases responsible for its mobility [20].
  • A total of 302 chloramphenicol-resistant Staphylococcus isolates were screened for the presence of the florfenicol/chloramphenicol resistance genes fexA and cfr and their localization on mobile genetic elements [21].
  • Representative isolates were shown to carry the mobile genetic elements Tn1545 and mega, were negative for Tn1207.1, had tetracycline resistance mediated by tet(M), and contained the mef(E) variant of mef(A) [22].
  • Association of two putative Azoarcus-related transposases with the large cluster and one Azoarcus-related putative salicylate 5-hydroxylase gene (ORF2) in the small cluster suggests that mobile genetic elements were likely involved in creating the novel arrangement of catabolic and regulatory genes in P. naphthalenivorans [23].
 

Gene context of Interspersed Repetitive Sequences

References

  1. Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer. Miki, Y., Nishisho, I., Horii, A., Miyoshi, Y., Utsunomiya, J., Kinzler, K.W., Vogelstein, B., Nakamura, Y. Cancer Res. (1992) [Pubmed]
  2. Jumping the barrier to beta-lactam resistance in Staphylococcus aureus. Katayama, Y., Zhang, H.Z., Hong, D., Chambers, H.F. J. Bacteriol. (2003) [Pubmed]
  3. A subsequence-specific DNA-binding domain resides in the 13 kDa amino terminus of the bacteriophage Mu transposase protein. Tolias, P.P., DuBow, M.S. J. Mol. Recognit. (1989) [Pubmed]
  4. Identification in methicillin-susceptible Staphylococcus hominis of an active primordial mobile genetic element for the staphylococcal cassette chromosome mec of methicillin-resistant Staphylococcus aureus. Katayama, Y., Takeuchi, F., Ito, T., Ma, X.X., Ui-Mizutani, Y., Kobayashi, I., Hiramatsu, K. J. Bacteriol. (2003) [Pubmed]
  5. Isolation of DNA markers from a region between incontinentia pigmenti 1 (IP1) X-chromosomal translocation breakpoints by a comparative PCR analysis of a radiation hybrid subclone mapping panel. Gorski, J.L., Burright, E.N., Reyner, E.L., Goodfellow, P.N., Burgess, D.L. Genomics (1992) [Pubmed]
  6. A structural basis for variegating position effects. Tartof, K.D., Hobbs, C., Jones, M. Cell (1984) [Pubmed]
  7. Direct repeats flank three small nuclear RNA pseudogenes in the human genome. Van Arsdell, S.W., Denison, R.A., Bernstein, L.B., Weiner, A.M., Manser, T., Gesteland, R.F. Cell (1981) [Pubmed]
  8. A transposon, Tn732, encoding gentamicin/tobramycin resistance. Nugent, M.E., Bone, D.H., Datta, N. Nature (1979) [Pubmed]
  9. A novel transposition system in Drosophila melanogaster depending on the Stalker mobile genetic element. Georgiev, P.G., Kiselev, S.L., Simonova, O.B., Gerasimova, T.I. EMBO J. (1990) [Pubmed]
  10. Evolution of the MAT locus and its Ho endonuclease in yeast species. Butler, G., Kenny, C., Fagan, A., Kurischko, C., Gaillardin, C., Wolfe, K.H. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  11. Sequence conservation in avian CR1: an interspersed repetitive DNA family evolving under functional constraints. Chen, Z.Q., Ritzel, R.G., Lin, C.C., Hodgetts, R.B. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  12. Reorganization of the Mu transpososome active sites during a cooperative transition between DNA cleavage and joining. Williams, T.L., Baker, T.A. J. Biol. Chem. (2004) [Pubmed]
  13. Molecular analysis of an unstable genomic region at chromosome band 11q23 reveals a disruption of the gene encoding the alpha2 subunit of platelet-activating factor acetylhydrolase (Pafah1a2) in human lymphoma. Lecointe, N., Meerabux, J., Ebihara, M., Hill, A., Young, B.D. Oncogene (1999) [Pubmed]
  14. DNA sequences of two expressed nuclear genes for human mitochondrial ADP/ATP translocase. Cozens, A.L., Runswick, M.J., Walker, J.E. J. Mol. Biol. (1989) [Pubmed]
  15. Novel type V staphylococcal cassette chromosome mec driven by a novel cassette chromosome recombinase, ccrC. Ito, T., Ma, X.X., Takeuchi, F., Okuma, K., Yuzawa, H., Hiramatsu, K. Antimicrob. Agents Chemother. (2004) [Pubmed]
  16. Painting of human chromosomes with probes generated from hybrid cell lines by PCR with Alu and L1 primers. Lengauer, C., Riethman, H., Cremer, T. Hum. Genet. (1990) [Pubmed]
  17. Specific binding sites for a pol III transcriptional repressor and pol II transcription factor YY1 within the internucleosomal spacer region in primate Alu repetitive elements. Humphrey, G.W., Englander, E.W., Howard, B.H. Gene Expr. (1996) [Pubmed]
  18. Timing of entry of meiosis depends on a mark generated by DNA methyltransferase 3a in testis. Yaman, R., Grandjean, V. Mol. Reprod. Dev. (2006) [Pubmed]
  19. Identification of the structural and functional domains of the large serine recombinase TnpX from Clostridium perfringens. Lucet, I.S., Tynan, F.E., Adams, V., Rossjohn, J., Lyras, D., Rood, J.I. J. Biol. Chem. (2005) [Pubmed]
  20. The emergence and evolution of methicillin-resistant Staphylococcus aureus. Hiramatsu, K., Cui, L., Kuroda, M., Ito, T. Trends Microbiol. (2001) [Pubmed]
  21. Distribution of Florfenicol Resistance Genes fexA and cfr among Chloramphenicol-Resistant Staphylococcus Isolates. Kehrenberg, C., Schwarz, S. Antimicrob. Agents Chemother. (2006) [Pubmed]
  22. Molecular epidemiology of multiresistant Streptococcus pneumoniae with both erm(B)- and mef(A)-mediated macrolide resistance. Farrell, D.J., Morrissey, I., Bakker, S., Morris, L., Buckridge, S., Felmingham, D. J. Clin. Microbiol. (2004) [Pubmed]
  23. The naphthalene catabolic (nag) genes of Polaromonas naphthalenivorans CJ2: evolutionary implications for two gene clusters and novel regulatory control. Jeon, C.O., Park, M., Ro, H.S., Park, W., Madsen, E.L. Appl. Environ. Microbiol. (2006) [Pubmed]
  24. Genome-wide analysis of mRNAs regulated by Drosha and Argonaute proteins in Drosophila melanogaster. Rehwinkel, J., Natalin, P., Stark, A., Brennecke, J., Cohen, S.M., Izaurralde, E. Mol. Cell. Biol. (2006) [Pubmed]
  25. Genetic background affects stability of mecA in Staphylococcus aureus. Katayama, Y., Robinson, D.A., Enright, M.C., Chambers, H.F. J. Clin. Microbiol. (2005) [Pubmed]
  26. The complete sequences of plasmids pB2 and pB3 provide evidence for a recent ancestor of the IncP-1beta group without any accessory genes. Heuer, H., Szczepanowski, R., Schneiker, S., Pühler, A., Top, E.M., Schlüter, A. Microbiology (Reading, Engl.) (2004) [Pubmed]
  27. Genomic stability of Saccharomyces cerevisiae baker's yeasts. Gasent-Ramírez, J.M., Castrejón, F., Querol, A., Ramón, D., Benítez, T. Syst. Appl. Microbiol. (1999) [Pubmed]
  28. Characterization of a highly unstable mouse minisatellite locus: evidence for somatic mutation during early development. Kelly, R., Bulfield, G., Collick, A., Gibbs, M., Jeffreys, A.J. Genomics (1989) [Pubmed]
 
WikiGenes - Universities