The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

CPD-7600     (Z)-but-2-enal

Synonyms: NSC-56354, NSC56354, AC1LD8B9, 15798-64-8, UNII-RB9WCA91QT, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Crotonic aldehyde


High impact information on Crotonic aldehyde


Chemical compound and disease context of Crotonic aldehyde


Biological context of Crotonic aldehyde


Anatomical context of Crotonic aldehyde


Associations of Crotonic aldehyde with other chemical compounds


Gene context of Crotonic aldehyde

  • The rate of Acr adduct formation was about 5-10-fold that of Cro adducts, depending on the type of PUFAs, and the rate of formation of HNE adducts from AA was also considerably slower than that of Acr adducts [24].
  • The hepatocarcinogen NPYR is metabolically activated by alpha-hydroxylation mediated by cytochrome P-450 enzymes to yield a 4-oxobutylating agent and 2-butenal (crotonaldehyde) [25].
  • The apparent Km value for Thermococcus strain ES-1 ferredoxin was 10 microM (with crotonaldehyde as the substrate) [26].
  • In the present study we have evaluated whether or not exposure to crotonaldehyde results in a significant increase in the frequency of abnormal sperm heads in male Swiss albino mice [19].
  • Unsaturated aldehydes, 4-hydroxynonenal, crotonaldehyde and acrolein, given by the same route induced putatively preneoplastic single cells positive for GST-P [27].

Analytical, diagnostic and therapeutic context of Crotonic aldehyde

  • Using a sensitive 32P-postlabeling method combined with high performance liquid chromatography, we obtained evidence that 1,N2-propanodeoxyguanosine adducts of acrolein (AdG) and crotonaldehyde (CdG) are present in the liver DNA of humans and rodents without carcinogen treatment [28].
  • In order to develop an immunoassay for DNA modifications resulting from exposure to crotonaldehyde, monoclonal antibodies specific for the 8R,6R- and 8S,6S-stereoisomers of 3-(2-deoxy-beta-D-erythro-pentofuranosyl)-5,6,7,8-tetrahydro-8-hydroxy-6 - methylpyrimido[1,2-a]purine-10(3H)one were produced [29].
  • Spontaneous cyclization gave the two diastereomers of the crotonaldehyde-adducted nucleoside that were readily separated by HPLC [30].
  • Adult male mice were treated with 8, 16 and 32 microl/kg b.w. of crotonaldehyde as a single intraperitoneal injection [19].
  • Among the three compounds, crotonaldehyde caused the highest activity induction (9.2-fold), but Western blot expression was the highest only for CmGSTU3 [31].


  1. Induction of liver tumors in F344 rats by crotonaldehyde. Chung, F.L., Tanaka, T., Hecht, S.S. Cancer Res. (1986) [Pubmed]
  2. Formation of cyclic deoxyguanosine adducts in Chinese hamster ovary cells by acrolein and crotonaldehyde. Foiles, P.G., Akerkar, S.A., Miglietta, L.M., Chung, F.L. Carcinogenesis (1990) [Pubmed]
  3. Acetaldehyde-hemoglobin adducts: an unreliable marker of alcohol abuse. Homaidan, F.R., Kricka, L.J., Clark, P.M., Jones, S.R., Whitehead, T.P. Clin. Chem. (1984) [Pubmed]
  4. Oxidative bioactivation of crotyl alcohol to the toxic endogenous aldehyde crotonaldehyde: association of protein carbonylation with toxicity in mouse hepatocytes. Fontaine, F.R., Dunlop, R.A., Petersen, D.R., Burcham, P.C. Chem. Res. Toxicol. (2002) [Pubmed]
  5. Demonstration of cell division by septation in a variety of gram-negative rods. Gilleland, H.E., Murray, R.G. J. Bacteriol. (1975) [Pubmed]
  6. 1,N2-propanodeoxyguanosine adducts: potential new biomarkers of smoking-induced DNA damage in human oral tissue. Nath, R.G., Ocando, J.E., Guttenplan, J.B., Chung, F.L. Cancer Res. (1998) [Pubmed]
  7. Recognition of oxidized low density lipoprotein by the scavenger receptor of macrophages results from derivatization of apolipoprotein B by products of fatty acid peroxidation. Steinbrecher, U.P., Lougheed, M., Kwan, W.C., Dirks, M. J. Biol. Chem. (1989) [Pubmed]
  8. Chemoselective hydrogenation catalysts: Pt on mesostructured CeO2 nanoparticles embedded within ultrathin layers of SiO2 binder. Concepción, P., Corma, A., Silvestre-Albero, J., Franco, V., Chane-Ching, J.Y. J. Am. Chem. Soc. (2004) [Pubmed]
  9. Acrolein in cigarette smoke inhibits T-cell responses. Lambert, C., McCue, J., Portas, M., Ouyang, Y., Li, J., Rosano, T.G., Lazis, A., Freed, B.M. J. Allergy Clin. Immunol. (2005) [Pubmed]
  10. Inhibition of glutathione S-transferase activity in human melanoma cells by alpha,beta-unsaturated carbonyl derivatives. Effects of acrolein, cinnamaldehyde, citral, crotonaldehyde, curcumin, ethacrynic acid, and trans-2-hexenal. Iersel, M.L., Ploemen, J.P., Struik, I., van Amersfoort, C., Keyzer, A.E., Schefferlie, J.G., van Bladeren, P.J. Chem. Biol. Interact. (1996) [Pubmed]
  11. Effect of crotonaldehyde on the metabolism of Candida utilis during the production of single cell protein from ethanol. Sestáková, M., Adámek, L., Stros, F. Folia Microbiol. (Praha) (1976) [Pubmed]
  12. Dietary antioxidants and cigarette smoke-induced biomolecular damage: a complex interaction. Eiserich, J.P., van der Vliet, A., Handelman, G.J., Halliwell, B., Cross, C.E. Am. J. Clin. Nutr. (1995) [Pubmed]
  13. A spectrum of mutations induced by crotonaldehyde in shuttle vector plasmids propagated in human cells. Kawanishi, M., Matsuda, T., Sasaki, G., Yagi, T., Matsui, S., Takebe, H. Carcinogenesis (1998) [Pubmed]
  14. Effects of cigarette smoke and its constituents on the adherence of polymorphonuclear leukocytes. Bridges, R.B., Hsieh, L., Haack, D.G. Infect. Immun. (1980) [Pubmed]
  15. (E)-2-hexenal-induced DNA damage and formation of cyclic 1,N2-(1,3-propano)-2'-deoxyguanosine adducts in mammalian cells. Gölzer, P., Janzowski, C., Pool-Zobel, B.L., Eisenbrand, G. Chem. Res. Toxicol. (1996) [Pubmed]
  16. A Schiff base is a major DNA adduct of crotonaldehyde. Wang, M., McIntee, E.J., Cheng, G., Shi, Y., Villalta, P.W., Hecht, S.S. Chem. Res. Toxicol. (2001) [Pubmed]
  17. Detection of acrolein and crotonaldehyde DNA adducts in cultured human cells and canine peripheral blood lymphocytes by 32P-postlabeling and nucleotide chromatography. Wilson, V.L., Foiles, P.G., Chung, F.L., Povey, A.C., Frank, A.A., Harris, C.C. Carcinogenesis (1991) [Pubmed]
  18. The influence of glutathione and detoxifying enzymes on DNA damage induced by 2-alkenals in primary rat hepatocytes and human lymphoblastoid cells. Eisenbrand, G., Schuhmacher, J., Gölzer, P. Chem. Res. Toxicol. (1995) [Pubmed]
  19. In vivo evaluation of induction of abnormal sperm morphology in mice by an unsaturated aldehyde crotonaldehyde. Jha, A.M., Kumar, M. Mutat. Res. (2006) [Pubmed]
  20. Replication-coupled repair of crotonaldehyde/acetaldehyde-induced Guanine-Guanine interstrand cross-links and their mutagenicity. Liu, X., Lao, Y., Yang, I.Y., Hecht, S.S., Moriya, M. Biochemistry (2006) [Pubmed]
  21. Detection of cyclic 1,N2-propanodeoxyguanosine adducts in DNA of rats treated with N-nitrosopyrrolidine and mice treated with crotonaldehyde. Chung, F.L., Young, R., Hecht, S.S. Carcinogenesis (1989) [Pubmed]
  22. Chloroperoxidase-mediated oxidation of 1,3-butadiene to 3-butenal, a crotonaldehyde precursor. Duescher, R.J., Elfarra, A.A. Chem. Res. Toxicol. (1993) [Pubmed]
  23. Formation of etheno adducts in reactions of enals via autoxidation. Chen, H.J., Chung, F.L. Chem. Res. Toxicol. (1994) [Pubmed]
  24. Formation of cyclic deoxyguanosine adducts from omega-3 and omega-6 polyunsaturated fatty acids under oxidative conditions. Pan, J., Chung, F.L. Chem. Res. Toxicol. (2002) [Pubmed]
  25. Differential effects of thiols on DNA modifications via alkylation and Michael addition by alpha-acetoxy-N-nitrosopyrrolidine. Wang, M., Nishikawa, A., Chung, F.L. Chem. Res. Toxicol. (1992) [Pubmed]
  26. Purification, characterization, and metabolic function of tungsten-containing aldehyde ferredoxin oxidoreductase from the hyperthermophilic and proteolytic archaeon Thermococcus strain ES-1. Heider, J., Ma, K., Adams, M.W. J. Bacteriol. (1995) [Pubmed]
  27. Lipid peroxidation end products-responded induction of a preneoplastic marker enzyme glutathione S-transferase P-form (GST-P) in rat liver on admistration via the portal vein. Satoh, K., Hayakari, M., Ookawa, K., Satou, M., Aizawa, S., Tanaka, M., Hatayama, I., Tsuchida, S., Uchida, K. Mutat. Res. (2001) [Pubmed]
  28. Detection of exocyclic 1,N2-propanodeoxyguanosine adducts as common DNA lesions in rodents and humans. Nath, R.G., Chung, F.L. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  29. Development of a monoclonal antibody-based immunoassay for cyclic DNA adducts resulting from exposure to crotonaldehyde. Foiles, P.G., Chung, F.L., Hecht, S.S. Cancer Res. (1987) [Pubmed]
  30. Stereospecific synthesis of oligonucleotides containing crotonaldehyde adducts of deoxyguanosine. Nechev, L.V., Kozekov, I., Harris, C.M., Harris, T.M. Chem. Res. Toxicol. (2001) [Pubmed]
  31. Modulation of pumpkin glutathione S-transferases by aldehydes and related compounds. Fujita, M., Hossain, M.Z. Plant Cell Physiol. (2003) [Pubmed]
WikiGenes - Universities