The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Agtr1b  -  angiotensin II receptor, type 1b

Rattus norvegicus

Synonyms: AT1, AT1B, AT1R, AT3, Agtr1, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Agtr1b


Psychiatry related information on Agtr1b


High impact information on Agtr1b

  • In rodents, two AT1 receptor subtypes, AT1A and AT1B, have been isolated [7].
  • Agonist-induced endocytosis and processing of the G protein-coupled AT1 angiotensin II (Ang II) receptor (AT1R) was studied in HEK 293 cells expressing green fluorescent protein (GFP)- or hemagglutinin epitope-tagged forms of the receptor [8].
  • METHODS AND RESULTS: In separate studies, three Ang II receptor antagonists, including AT1 selective (L-158,809), balanced AT1/AT2 (L-163,082), and AT2 selective (L-164,282) agents, were evaluated for their ability to inhibit vascular intimal thickening in a porcine coronary artery model of vascular injury [9].
  • CONCLUSIONS: These findings indicate that chronic blockade of Ang II receptors by either site-selective or balanced AT1/AT2 antagonists is insufficient to inhibit intimal hyperplasia after experimental coronary vascular injury in the pig [9].
  • The change in PKC epsilon distribution and in TnI phosphorylation in diabetic animals was completely prevented by rendering the animals euglycemic with insulin or by concomitant treatment with a specific angiotensin II type-1 receptor (AT1) antagonist [10].

Chemical compound and disease context of Agtr1b


Biological context of Agtr1b


Anatomical context of Agtr1b


Associations of Agtr1b with chemical compounds


Regulatory relationships of Agtr1b

  • AT1A subtype mRNA was expressed in vascular smooth muscle whereas AT1B mRNA was expressed in adrenal and pituitary [6].
  • In the present study we used the Ang II subtype 1 (AT1) receptor antagonist losartan to investigate whether rising plasma Ang II levels stimulate angiotensinogen production to counteract the falling plasma angiotensinogen levels caused by increasing renin activity in plasma [29].
  • This effect was transduced by angiotensin receptor type-1 (AT1) and was inhibited by a flavoprotein inhibitor (DIP) or p22phox antisense oligonucleotides, indicating the involvement of membrane NAD(P)H oxidase [30].

Other interactions of Agtr1b

  • These findings are consistent with AngII mediated signal transduction through AT1A and AT1B sites for phospholipase C mediated [Ca(2+)]i mobilization and inhibition of adenylyl cyclase [22].
  • Moreover, differences in Agtr1b mRNA abundance and sequence reinforce the putative role of the Agtr1b gene in the differential plasma renin stress reactivity between the two rat strains [31].
  • In conclusion, glucocorticoids diminish Ang II receptor density at the mesangial cell surface through a mechanism that implies successive interaction with the glucocorticoid receptor and specific reduction in AT1B receptor mRNA expression [32].
  • METHODS AND RESULTS: Oral administration of either the endothelin A (ETA) and ETB receptor antagonist bosentan or the angiotensin type 1 (AT1) receptor antagonist valsartan for 12 weeks reduced systolic blood pressure (SBP) of nondiabetic and diabetic Ren-2 rats to normotensive levels [33].
  • These findings indicate that stretch-stimulated DNA synthesis and gene expression in normal bladder SMC occur via multiple independent receptor systems (e.g., AT1 and ErbB2) and at least one MAPK pathway (p38 SAPK2) [34].

Analytical, diagnostic and therapeutic context of Agtr1b

  • Sequence analysis indicated, however, that the cDNA fragment was a mixture of two highly similar gene products: the first cDNA was identical to the previously cloned AT1 receptor (termed here AT1A) whereas the second cDNA (termed here AT1B) was 92% identical at the nucleotide level and 96% identical at the amino acid level [35].
  • We report that [125I]Sar1-Ang II binding to AT1 receptors and AT1A receptor mRNA expression increase selectively in the dorsomedial arcuate nucleus of 17beta-estradiol-primed ovariectomized rats after treatment with progesterone [28].
  • In the adrenal gland, in which the AT1B receptor is predominant, low salt diet led to a transient increase in the expression of this receptor gene, with a maximum around day 10 of feeding [36].
  • Both reverse transcription-polymerase chain reaction and Northern blot analysis using specific short probes from the 3' noncoding region of the cDNA demonstrated the presence of AT1A and AT1B receptor mRNAs in rat mesangial cells, with a slight predominance of AT1B [32].
  • Structural assessment of the expressed AT1 receptors by two-dimensional Western blotting revealed that a spectrum of structurally distinct AT1 receptor isoforms is expressed in the renal tissues of both animal models [37].


  1. Transient upregulation of the AT2 receptor mRNA level after global ischemia in the rat brain. Makino, I., Shibata, K., Ohgami, Y., Fujiwara, M., Furukawa, T. Neuropeptides (1996) [Pubmed]
  2. Water deprivation upregulates ANG II AT1 binding and mRNA in rat subfornical organ and anterior pituitary. Sanvitto, G.L., Jöhren, O., Häuser, W., Saavedra, J.M. Am. J. Physiol. (1997) [Pubmed]
  3. Regulation by sodium intake of type 1 angiotensin II receptor mRNAs in the kidney of Sabra rats. Nicco, C., Martin, H., Yagil, C., Yagil, Y., Bankir, L., Bouby, N. J. Hypertens. (2000) [Pubmed]
  4. Regression of renal vascular and glomerular fibrosis: role of angiotensin II receptor antagonism and matrix metalloproteinases. Boffa, J.J., Lu, Y., Placier, S., Stefanski, A., Dussaule, J.C., Chatziantoniou, C. J. Am. Soc. Nephrol. (2003) [Pubmed]
  5. Establishment and in vivo characterization of multidrug-resistant dunning R3327 rat prostate-carcinoma cell-lines. Bashir, I., Sikora, K., Abel, P., Foster, C.S. Int. J. Cancer (1994) [Pubmed]
  6. Differential expression of angiotensin II receptor subtype mRNAs (AT-1A and AT-1B) in the brain. Kakar, S.S., Riel, K.K., Neill, J.D. Biochem. Biophys. Res. Commun. (1992) [Pubmed]
  7. Expression of angiotensin type-1 (AT1) and type-2 (AT2) receptor mRNAs in the adult rat brain: a functional neuroanatomical review. Lenkei, Z., Palkovits, M., Corvol, P., Llorens-Cortès, C. Frontiers in neuroendocrinology. (1997) [Pubmed]
  8. Differential PI 3-kinase dependence of early and late phases of recycling of the internalized AT1 angiotensin receptor. Hunyady, L., Baukal, A.J., Gaborik, Z., Olivares-Reyes, J.A., Bor, M., Szaszak, M., Lodge, R., Catt, K.J., Balla, T. J. Cell Biol. (2002) [Pubmed]
  9. Effects of subtype-selective and balanced angiotensin II receptor antagonists in a porcine coronary artery model of vascular restenosis. Huckle, W.R., Drag, M.D., Acker, W.R., Powers, M., McFall, R.C., Holder, D.J., Fujita, T., Stabilito, I.I., Kim, D., Ondeyka, D.L., Mantlo, N.B., Chang, R.S., Reilly, C.F., Schwartz, R.S., Greenlee, W.J., Johnson, R.G. Circulation (1996) [Pubmed]
  10. Experimental diabetes is associated with functional activation of protein kinase C epsilon and phosphorylation of troponin I in the heart, which are prevented by angiotensin II receptor blockade. Malhotra, A., Reich, D., Reich, D., Nakouzi, A., Sanghi, V., Geenen, D.L., Buttrick, P.M. Circ. Res. (1997) [Pubmed]
  11. Angiotensin II receptor blockade in TGR(mREN2)27: effects of renin-angiotensin-system gene expression and cardiovascular functions. Böhm, M., Lee, M., Kreutz, R., Kim, S., Schinke, M., Djavidani, B., Wagner, J., Kaling, M., Wienen, W., Bader, M. J. Hypertens. (1995) [Pubmed]
  12. Role of AT1 receptors and NAD(P)H oxidase in diabetes-aggravated ischemic brain injury. Kusaka, I., Kusaka, G., Zhou, C., Ishikawa, M., Nanda, A., Granger, D.N., Zhang, J.H., Tang, J. Am. J. Physiol. Heart Circ. Physiol. (2004) [Pubmed]
  13. In vitro and in vivo effects of UP 269-6, a new potent orally active nonpeptide angiotensin II receptor antagonist, on vascular smooth muscle cell proliferation. Virone-Oddos, A., Desangle, V., Provost, D., Cazes, M., Caussade, F., Cloarec, A. Br. J. Pharmacol. (1997) [Pubmed]
  14. Endogenous angiotensin and pressure modulate brain angiotensinogen and AT1A mRNA expression. Sangaleti, C.T., Crescenzi, A., Michelini, L.C. Hypertension (2004) [Pubmed]
  15. Growth-dependent induction of angiotensin II type 2 receptor in rat mesangial cells. Goto, M., Mukoyama, M., Suga, S., Matsumoto, T., Nakagawa, M., Ishibashi, R., Kasahara, M., Sugawara, A., Tanaka, I., Nakao, K. Hypertension (1997) [Pubmed]
  16. Renin and angiotensin II receptor gene expression in kidneys of renal hypertensive rats. Haefliger, J.A., Bergonzelli, G., Waeber, G., Aubert, J.F., Nussberger, J., Gavras, H., Nicod, P., Waeber, B. Hypertension (1995) [Pubmed]
  17. Tissular expression and regulation of type 1 angiotensin II receptor subtypes by quantitative reverse transcriptase-polymerase chain reaction analysis. Llorens-Cortes, C., Greenberg, B., Huang, H., Corvol, P. Hypertension (1994) [Pubmed]
  18. Characterization of the angiotensin II AT1 receptor subtype involved in DNA synthesis in cultured vascular smooth muscle cells. Briand, V., Riva, L., Galzin, A.M. Br. J. Pharmacol. (1994) [Pubmed]
  19. Identification of a fourth angiotensin AT1 receptor subtype in rat. Hahn, A.W., Jonas, U., Buehler, F.R., Resink, T.J. Biochem. Biophys. Res. Commun. (1993) [Pubmed]
  20. Angiotensin II-elicited signal transduction via AT1 receptors in endothelial cells. Pueyo, M.E., N'Diaye, N., Michel, J.B. Br. J. Pharmacol. (1996) [Pubmed]
  21. Angiotensin II receptor subtype gene expression and cellular localization in the retina and non-neuronal ocular tissues of the rat. Wheeler-Schilling, T.H., Kohler, K., Sautter, M., Guenther, E. Eur. J. Neurosci. (1999) [Pubmed]
  22. Signal transduction mediated by angiotensin II receptor subtypes expressed in rat renal mesangial cells. Madhun, Z.T., Ernsberger, P., Ke, F.C., Zhou, J., Hopfer, U., Douglas, J.G. Regul. Pept. (1993) [Pubmed]
  23. Gene expression of angiotensin II receptor subtypes in the cerebellar cortex of young rats. Jöhren, O., Saavedra, J.M. Neuroreport (1996) [Pubmed]
  24. Differential loss in function of angiotensin II receptor subtypes during tissue storage. Moulik, S., Speth, R.C., Rowe, B.P. Life Sci. (2000) [Pubmed]
  25. Localization of the genes encoding the three rat angiotensin II receptors, Agtr1a, Agtr1b, Agtr2, and the human AGTR2 receptor respectively to rat chromosomes 17q12, 2q24 and Xq34, and the human Xq22. Tissir, F., Rivière, M., Guo, D.F., Tsuzuki, S., Inagami, T., Levan, G., Szpirer, J., Szpirer, C. Cytogenet. Cell Genet. (1995) [Pubmed]
  26. Regulation of adrenal angiotensin receptor subtypes: a possible mechanism for sympathectomy-induced adrenal hypertrophy. Qiu, J., Nelson, S.H., Speth, R.C., Wang, D.H. J. Hypertens. (1999) [Pubmed]
  27. Gene expression of the type-1 angiotensin II receptor in rat adrenal gland. Wakamiya, R., Kohara, K., Hiwada, K. Blood pressure. Supplement. (1994) [Pubmed]
  28. Angiotensin II AT1A receptor mRNA expression is induced by estrogen-progesterone in dopaminergic neurons of the female rat arcuate nucleus. Jöhren, O., Sanvitto, G.L., Egidy, G., Saavedra, J.M. J. Neurosci. (1997) [Pubmed]
  29. Angiotensinogen depletion by high renin levels in hypertensive rats: no evidence for tonic stimulation of angiotensinogen by angiotensin II. Gahnem, F., Camargo, M.J., von Lutterotti, N., Laragh, J.H., Sealey, J.E. J. Hypertens. (1995) [Pubmed]
  30. Angiotensin II-mediated expression of p27Kip1 and induction of cellular hypertrophy in renal tubular cells depend on the generation of oxygen radicals. Hannken, T., Schroeder, R., Stahl, R.A., Wolf, G. Kidney Int. (1998) [Pubmed]
  31. QTL mapping for traits associated with stress neuroendocrine reactivity in rats. Llamas, B., Contesse, V., Guyonnet-Duperat, V., Vaudry, H., Mormède, P., Moisan, M.P. Mamm. Genome (2005) [Pubmed]
  32. Regulation of angiotensin II receptor subtypes by dexamethasone in rat mesangial cells. Chansel, D., Llorens-Cortes, C., Vandermeersch, S., Pham, P., Ardaillou, R. Hypertension (1996) [Pubmed]
  33. Effects of endothelin or angiotensin II receptor blockade on diabetes in the transgenic (mRen-2)27 rat. Kelly, D.J., Skinner, S.L., Gilbert, R.E., Cox, A.J., Cooper, M.E., Wilkinson-Berka, J.L. Kidney Int. (2000) [Pubmed]
  34. Cyclic stretch activates p38 SAPK2-, ErbB2-, and AT1-dependent signaling in bladder smooth muscle cells. Nguyen, H.T., Adam, R.M., Bride, S.H., Park, J.M., Peters, C.A., Freeman, M.R. Am. J. Physiol., Cell Physiol. (2000) [Pubmed]
  35. Characterization of an angiotensin type-1 receptor partial cDNA from rat kidney: evidence for a novel AT1B receptor subtype. Ye, M.Q., Healy, D.P. Biochem. Biophys. Res. Commun. (1992) [Pubmed]
  36. Dietary salt intake modulates angiotensin II type 1 receptor gene expression. Schmid, C., Castrop, H., Reitbauer, J., Della Bruna, R., Kurtz, A. Hypertension (1997) [Pubmed]
  37. Immunohistochemical localization of distinct Angiotensin II AT receptor isoforms in the kidneys of the Sprague-Dawley rat and the desert rodent Meriones Crassus. Al-Qattan, K.K., Al-Akhawand, S.J., Mansour, M.H. Anatomia, histologia, embryologia. (2006) [Pubmed]
WikiGenes - Universities