The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Ear, Middle

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Ear, Middle

 

Psychiatry related information on Ear, Middle

 

High impact information on Ear, Middle

  • The hearing of persons who were heterozygous for mutations in GJB2 was assessed by means of pure-tone audiometry, measurement of middle-ear immittance, and recording of otoacoustic emissions [7].
  • Among the 474 subjects who were evaluated at the four-week end point, the rate of resolution of middle-ear effusion was twice as high in those treated with amoxicillin, either with or without the decongestant-antihistamine, as in those who received placebo (P less than 0.001), but 69.8 percent of the amoxicillin-treated subjects still had effusion [8].
  • Outer membranes from two nontypable H. influenzae isolates that caused otitis media and pneumonia (middle ear and transtracheal aspirates) were prepared by shearing organisms in EDTA [9].
  • The addition of myringotomy to augmentin did not seem to affect either the persistence of the infection after treatment or the residual middle ear effusion [10].
  • To determine the role of Tbx1 in the first pharyngeal pouch (PPI) in forming outer and middle ears, we tissue-specifically inactivated the gene using Foxg1-Cre [11].
 

Chemical compound and disease context of Ear, Middle

 

Biological context of Ear, Middle

 

Anatomical context of Ear, Middle

 

Associations of Ear, Middle with chemical compounds

  • As one control, the vestibular neuroepithelium was destroyed by injecting sodium arsanilate into the middle ear, bilaterally [27].
  • Inactivation of the Gdf6 gene causes defects in joint, ligament, and cartilage formation at sites distinct from those seen in Gdf5 mutants, including the wrist and ankle, the middle ear, and the coronal suture between bones in the skull [28].
  • Retinoic acid disturbs mouse middle ear development in a stage-dependent fashion [29].
  • METHODS: A total of 210 children (mean age, 2.1 years; range, 0.7-3.9 years) with normal middle ear status and URI of 48 hours' duration or less were randomly allocated to receive either fluticasone (100 microg twice daily) or placebo for 7 days [30].
  • Levels of amoxicillin (mean+/-standard error [SE], 1.48+/-1.6 microng/ml) in middle ear fluid were consistently and significantly higher (P less than 0.05) than levels of ampicillin (mean+/-SE, 6.2+/-5.0 microng/ml) [31].
 

Gene context of Ear, Middle

  • In Hoxa2 mouse mutants, the hyoid skeleton is replaced by a duplicated set of mandibular and middle ear structures [32].
  • Bapx1 regulates patterning in the middle ear: altered regulatory role in the transition from the proximal jaw during vertebrate evolution [33].
  • These data indicate that the epithelium of the middle ear and Eustachian tube expresses distinct mucin profiles and that MUC5B and MUC4 mucins are highly produced and secreted in the diseased middle ear [34].
  • MCP was expressed on the hyperplastic three to four outer cell layers of the epithelium, while CD59 was expressed throughout the middle ear mucosa [35].
  • These results support the authors' hypothesis that IL-1 beta, TNF-alpha, and IL-8 are intimately involved in the inflammatory cascade in the middle ear and suggest regulation of these cytokines as possible sites of future therapeutic intervention in otitis media with effusion (OME) [36].
 

Analytical, diagnostic and therapeutic context of Ear, Middle

References

  1. Risk factors for persistent middle-ear effusions. Otitis media, catarrh, cigarette smoke exposure, and atopy. Kraemer, M.J., Richardson, M.A., Weiss, N.S., Furukawa, C.T., Shapiro, G.G., Pierson, W.E., Bierman, C.W. JAMA (1983) [Pubmed]
  2. The role of Six1 in mammalian auditory system development. Zheng, W., Huang, L., Wei, Z.B., Silvius, D., Tang, B., Xu, P.X. Development (2003) [Pubmed]
  3. Adenovirus-mediated in vivo gene transfer in guinea pig middle ear mucosa. Mondain, M., Restituito, S., Vincenti, V., Gardiner, Q., Uziel, A., Delabre, A., Mathieu, M., Bousquet, J., Demoly, P. Hum. Gene Ther. (1998) [Pubmed]
  4. Chronic inflammatory disease of the middle ear cavities: Gd-DTPA-enhanced MR imaging. Martin, N., Sterkers, O., Nahum, H. Radiology. (1990) [Pubmed]
  5. Cholesterol granulomas of the middle ear cavities: MR imaging. Martin, N., Sterkers, O., Mompoint, D., Julien, N., Nahum, H. Radiology. (1989) [Pubmed]
  6. CT evaluation of malformed external and middle ear and its surgical correlation. Leng, T.J., Gong, J., Lan, B.S. Chin. Med. J. (1992) [Pubmed]
  7. Mutations in the connexin 26 gene (GJB2) among Ashkenazi Jews with nonsyndromic recessive deafness. Morell, R.J., Kim, H.J., Hood, L.J., Goforth, L., Friderici, K., Fisher, R., Van Camp, G., Berlin, C.I., Oddoux, C., Ostrer, H., Keats, B., Friedman, T.B. N. Engl. J. Med. (1998) [Pubmed]
  8. Efficacy of amoxicillin with and without decongestant-antihistamine for otitis media with effusion in children. Results of a double-blind, randomized trial. Mandel, E.M., Rockette, H.E., Bluestone, C.D., Paradise, J.L., Nozza, R.J. N. Engl. J. Med. (1987) [Pubmed]
  9. Characterization of antigens from nontypable Haemophilus influenzae recognized by human bactericidal antibodies. Role of Haemophilus outer membrane proteins. Gnehm, H.E., Pelton, S.I., Gulati, S., Rice, P.A. J. Clin. Invest. (1985) [Pubmed]
  10. Randomised study of myringotomy, amoxycillin/clavulanate, or both for acute otitis media in infants. Engelhard, D., Cohen, D., Strauss, N., Sacks, T.G., Jorczak-Sarni, L., Shapiro, M. Lancet (1989) [Pubmed]
  11. Tissue-specific roles of Tbx1 in the development of the outer, middle and inner ear, defective in 22q11DS patients. Arnold, J.S., Braunstein, E.M., Ohyama, T., Groves, A.K., Adams, J.C., Brown, M.C., Morrow, B.E. Hum. Mol. Genet. (2006) [Pubmed]
  12. Virus and bacteria enhance histamine production in middle ear fluids of children with acute otitis media. Chonmaitree, T., Patel, J.A., Lett-Brown, M.A., Uchida, T., Garofalo, R., Owen, M.J., Howie, V.M. J. Infect. Dis. (1994) [Pubmed]
  13. Beta-lactamase-producing nontypeable Haemophilus influenzae fails to protect Streptococcus pneumoniae from amoxicillin during experimental acute otitis media. Westman, E., Lundin, S., Hermansson, A., Melhus, A. Antimicrob. Agents Chemother. (2004) [Pubmed]
  14. Penetration of ceftibuten into middle ear fluid. Lin, C., Kumari, P., Perrotta, R.J., Reidenberg, B.E. Antimicrob. Agents Chemother. (1996) [Pubmed]
  15. Enhancement of the in vitro and in vivo activities of clarithromycin against Haemophilus influenzae by 14-hydroxy-clarithromycin, its major metabolite in humans. Hardy, D.J., Swanson, R.N., Rode, R.A., Marsh, K., Shipkowitz, N.L., Clement, J.J. Antimicrob. Agents Chemother. (1990) [Pubmed]
  16. Penetration of cefprozil into middle ear fluid of patients with otitis media. Shyu, W.C., Haddad, J., Reilly, J., Khan, W.N., Campbell, D.A., Tsai, Y., Barbhaiya, R.H. Antimicrob. Agents Chemother. (1994) [Pubmed]
  17. Immune response to acute otitis media in children III. Implications of viral antibody in middle ear fluid. Sloyer, J.L., Howie, V.M., Ploussard, J.H., Bradac, J., Habercorn, M., Ogra, P.L. J. Immunol. (1977) [Pubmed]
  18. Effect of melatonin on lipid peroxidation, glutathione and glutathione-dependent enzyme activities in experimental otitis media with effusion in guinea pigs. Taysi, S., Ucuncu, H., Elmastas, M., Aktan, B., Emin Buyukokuroglu, M. J. Pineal Res. (2005) [Pubmed]
  19. Antimicrobial resistance of Streptococcus pneumoniae in the United States, 1979-1987. The Pneumococcal Surveillance Working Group. Spika, J.S., Facklam, R.R., Plikaytis, B.D., Oxtoby, M.J. J. Infect. Dis. (1991) [Pubmed]
  20. Therapeutic effects of parenteral beta-lactam antibiotics on experimental otitis media caused by penicillin-resistant Streptococcus pneumoniae in guinea-pigs. Hori, R., Araki, H., Yonezawa, M., Minami, S., Watanabe, Y. J. Antimicrob. Chemother. (2000) [Pubmed]
  21. Correlation between loss of middle ear bones and altered goosecoid gene expression in the branchial region following retinoic acid treatment of mouse embryos in vivo. Zhu, C.C., Yamada, G., Blum, M. Biochem. Biophys. Res. Commun. (1997) [Pubmed]
  22. Lack of pendrin expression leads to deafness and expansion of the endolymphatic compartment in inner ears of Foxi1 null mutant mice. Hulander, M., Kiernan, A.E., Blomqvist, S.R., Carlsson, P., Samuelsson, E.J., Johansson, B.R., Steel, K.P., Enerbäck, S. Development (2003) [Pubmed]
  23. Pediatric allergic rhinitis and comorbid disorders. Lack, G. J. Allergy Clin. Immunol. (2001) [Pubmed]
  24. Human beta-defensin-1 mRNA is transcribed in tympanic membrane and adjacent auditory canal epithelium. Bøe, R., Silvola, J., Yang, J., Moens, U., McCray, P.B., Stenfors, L.E., Seljfelid, R. Infect. Immun. (1999) [Pubmed]
  25. Nasopharyngeal antibodies to pneumococcal capsular polysaccharides in children with acute otitis media. Virolainen, A., Jero, J., Käyhty, H., Karma, P., Leinonen, M., Eskola, J. J. Infect. Dis. (1995) [Pubmed]
  26. Therapy of acute otitis media caused by Branhamella catarrhalis. Preliminary report. Shurin, P.A., Van Hare, G.F. Drugs (1986) [Pubmed]
  27. Fos-defined activity in rat brainstem following centripetal acceleration. Kaufman, G.D., Anderson, J.H., Beitz, A.J. J. Neurosci. (1992) [Pubmed]
  28. Multiple joint and skeletal patterning defects caused by single and double mutations in the mouse Gdf6 and Gdf5 genes. Settle, S.H., Rountree, R.B., Sinha, A., Thacker, A., Higgins, K., Kingsley, D.M. Dev. Biol. (2003) [Pubmed]
  29. Retinoic acid disturbs mouse middle ear development in a stage-dependent fashion. Mallo, M. Dev. Biol. (1997) [Pubmed]
  30. Intranasal fluticasone propionate does not prevent acute otitis media during viral upper respiratory infection in children. Ruohola, A., Heikkinen, T., Waris, M., Puhakka, T., Ruuskanen, O. J. Allergy Clin. Immunol. (2000) [Pubmed]
  31. Comparison of concentrations of amoxicillin and ampicillin in serum and middle ear fluid of children with chronic otitis media. Klimek, J.J., Nightingale, C., Lehmann, W.B., Quintiliani, R. J. Infect. Dis. (1977) [Pubmed]
  32. Temporal requirement of Hoxa2 in cranial neural crest skeletal morphogenesis. Santagati, F., Minoux, M., Ren, S.Y., Rijli, F.M. Development (2005) [Pubmed]
  33. Bapx1 regulates patterning in the middle ear: altered regulatory role in the transition from the proximal jaw during vertebrate evolution. Tucker, A.S., Watson, R.P., Lettice, L.A., Yamada, G., Hill, R.E. Development (2004) [Pubmed]
  34. Characterization of mucins in human middle ear and Eustachian tube. Lin, J., Tsuprun, V., Kawano, H., Paparella, M.M., Zhang, Z., Anway, R., Ho, S.B. Am. J. Physiol. Lung Cell Mol. Physiol. (2001) [Pubmed]
  35. Complement activation and expression of membrane regulators in the middle ear mucosa in otitis media with effusion. Närkiö-Mäkelä, M., Jero, J., Meri, S. Clin. Exp. Immunol. (1999) [Pubmed]
  36. Interleukin-8 expression in otitis media. Maxwell, K.S., Fitzgerald, J.E., Burleson, J.A., Leonard, G., Carpenter, R., Kreutzer, D.L. Laryngoscope (1994) [Pubmed]
  37. Expression of cytokine and chemokine genes by human middle ear epithelial cells induced by influenza A virus and Streptococcus pneumoniae opacity variants. Tong, H.H., Long, J.P., Shannon, P.A., DeMaria, T.F. Infect. Immun. (2003) [Pubmed]
  38. Detection of rhinovirus, respiratory syncytial virus, and coronavirus infections in acute otitis media by reverse transcriptase polymerase chain reaction. Pitkäranta, A., Virolainen, A., Jero, J., Arruda, E., Hayden, F.G. Pediatrics (1998) [Pubmed]
  39. Penetration of clarithromycin and its 14-hydroxy metabolite into middle ear effusion in children with secretory otitis media. Sundberg, L., Cederberg, A. J. Antimicrob. Chemother. (1994) [Pubmed]
  40. Tissue response of several polymeric materials implanted in the rat middle ear. Williams, K.R., Blayney, A.W. Biomaterials (1987) [Pubmed]
  41. Autoregulation of human inner ear blood flow during middle ear surgery with propofol or isoflurane anesthesia during controlled hypotension. Preckel, M.P., Ferber-Viart, C., Leftheriotis, G., Dubreuil, C., Duclaux, R., Saumet, J.L., Banssillon, V., Granry, J.C. Anesth. Analg. (1998) [Pubmed]
 
WikiGenes - Universities