The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Hymenoptera

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Hymenoptera

 

Psychiatry related information on Hymenoptera

  • Male Roptrocerus xylophagorum (Ratzeburg) (Hymenoptera: Pteromalidae) exhibited courtship and mating behaviors including wing fanning, antennation, mounting, and copulation attempts when exposed to glass bulb decoys coated with a whole-body extract of females in hexane, acetone, or methanol [6].
 

High impact information on Hymenoptera

  • Hymenoptera stings and serum tryptase [7].
  • The arrangement of tRNA genes at the junction of the cytochrome oxidase II and ATPase 8 genes was examined across a broad range of Hymenoptera [8].
  • We report the complete sequence of a paralogous copy of elongation factor-1 alpha (EF-1 alpha) in the honeybee, Apis mellifera (Hymenoptera: Apidae) [9].
  • Immunotherapy is clearly effective in the treatment of allergic rhinitis and Hymenoptera sensitivity and probably effective in the treatment of asthma [10].
  • Members of the odorant-binding protein (OBP) and chemosensory protein (CSP) families were identified and characterised in the sensory tissues of the social wasp Polistes dominulus (Hymenoptera: Vespidae) [11].
 

Chemical compound and disease context of Hymenoptera

 

Biological context of Hymenoptera

  • We inferred the incidence of nucleotide conversions in the COI and 16S rRNA mitochondrial genes of members of the Symphyta and basal Apocrita (Hymenoptera) [17].
  • A phylogeny of aphid parasitoids (Hymenoptera: Braconidae: Aphidiinae) inferred from mitochondrial NADH 1 dehydrogenase gene sequence [18].
  • Individual hymenoptera venom compounds induce upregulation of the basophil activation marker ectonucleotide pyrophosphatase/phosphodiesterase 3 (CD203c) in sensitized patients [19].
  • CSD is considered to be the ancestral form of sex determination within the Hymenoptera because members of the most basal taxa have CSD while some of the more derived groups have other mechanisms of sex determination that produce the haplo-diploid pattern without penalizing inbreeding [20].
  • Genetics of Euglossini bees (Hymenoptera) in fragments of the Atlantic Forest in the region of Viçosa, MG [21].
 

Anatomical context of Hymenoptera

 

Associations of Hymenoptera with chemical compounds

  • Pure venom is a potent effective allergen but is difficult to obtain in sufficient quantities from all Hymenoptera species [24].
  • The technique has been applied for the diagnosis of allergy to pollen, house dust mite, food, natural rubber latex, hymenoptera venom and drugs [25].
  • In the nine orders of insects surveyed (Thysanura, Odonata, Orthoptera, Isoptera, Hemiptera, Coleoptera, Diptera, Lepidoptera, and Hymenoptera), GABA-like immunoreactive neurons within a thoracic hemiganglion were clustered into six distinct groups that occupied positions similar to the six postembryonic lineages in Manduca [26].
  • Flight chamber experiments were conducted to examine the capacity of the larval parasitoid Microplitis croceipes (Hymenoptera: Braconidae) to learn to distinguish between structurally related aliphatic alcohols differing in the carbon chain-length and the position of the functional group, and between an alcohol and the respective aldehyde [27].
  • Toxoneuron nigriceps (Viereck) (Hymenoptera: Braconidae) is an endophagous parasitoid of larval stages of the tobacco budworm, Heliothis virescens (F.) (Lepidoptera: Noctuidae) [28].
 

Gene context of Hymenoptera

  • Concomitant augmentation of CD4+ CD45R+ suppressor/inducer subset and diminution of CD4+ CDw29+ helper/inducer subset during rush hyposensitization in hymenoptera venom allergy [29].
  • These results suggest that RANTES plasma levels are positively correlated with the severity of the reaction to hymenoptera venom, and that a significant decrease in the levels of RANTES occurs only in children with high pretreatment levels [30].
  • The cytochrome b region in the mitochondrial DNA of the ant Tetraponera rufoniger: sequence divergence in Hymenoptera may be associated with nucleotide content [31].
  • Lymphocyte-mediated inhibition of platelet cytotoxic functions during Hymenoptera venom desensitization: characterization of a suppressive lymphokine [32].
  • The aim of this study was to obtain more accurate figures of the prevalence of cutaneous sensitivity to Hymenoptera venoms (HV) and its correlation with other parameters of atopy in a population of primary schoolchildren [33].
 

Analytical, diagnostic and therapeutic context of Hymenoptera

References

  1. Immunotherapy with allergens. Weber, R.W. JAMA (1997) [Pubmed]
  2. Constitutively raised serum concentrations of mast-cell tryptase and severe anaphylactic reactions to Hymenoptera stings. Ludolph-Hauser, D., Ruëff, F., Fries, C., Schöpf, P., Przybilla, B. Lancet (2001) [Pubmed]
  3. A circulating suppressive factor of platelet cytotoxic functions after rush immunotherapy in Hymenoptera venom hypersensitivity. Tsicopoulos, A., Tonnel, A.B., Wallaert, B., Joseph, M., Ramon, P., Capron, A. J. Immunol. (1989) [Pubmed]
  4. Elevated basal serum tryptase and hymenoptera venom allergy: relation to severity of sting reactions and to safety and efficacy of venom immunotherapy. Haeberli, G., Brönnimann, M., Hunziker, T., Müller, U. Clin. Exp. Allergy (2003) [Pubmed]
  5. Bites and stings of Hymenoptera, caterpillar and beetle. Green, V.A., Siegel, C.J. J. Toxicol. Clin. Toxicol. (1983) [Pubmed]
  6. Evidence for a sex pheromone in bark beetle parasitoid Roptrocerus xylophagorum. Sullivan, B.T. J. Chem. Ecol. (2002) [Pubmed]
  7. Hymenoptera stings and serum tryptase. Krishna, M.T., Fearby, S., Annila, I., Frew, A. Lancet (2001) [Pubmed]
  8. Evolutionary dynamics of a mitochondrial rearrangement "hot spot" in the Hymenoptera. Dowton, M., Austin, A.D. Mol. Biol. Evol. (1999) [Pubmed]
  9. Elongation factor-1 alpha occurs as two copies in bees: implications for phylogenetic analysis of EF-1 alpha sequences in insects. Danforth, B.N., Ji, S. Mol. Biol. Evol. (1998) [Pubmed]
  10. The appropriate use of skin testing and allergen immunotherapy in young children. Ownby, D.R., Adinoff, A.D. J. Allergy Clin. Immunol. (1994) [Pubmed]
  11. Soluble proteins of chemical communication in the social wasp Polistes dominulus. Calvello, M., Guerra, N., Brandazza, A., D'Ambrosio, C., Scaloni, A., Dani, F.R., Turillazzi, S., Pelosi, P. Cell. Mol. Life Sci. (2003) [Pubmed]
  12. The renin angiotensin system and hymenoptera venom anaphylaxis. Hermann, K., Ring, J. Clin. Exp. Allergy (1993) [Pubmed]
  13. Epidemiology of life-threatening and lethal anaphylaxis: a review. Moneret-Vautrin, D.A., Morisset, M., Flabbee, J., Beaudouin, E., Kanny, G. Allergy (2005) [Pubmed]
  14. Plasma concentrations of arginine vasopressin, oxytocin and angiotensin in patients with hymenoptera venom anaphylaxis. Hermann, K., von Eschenbach, C.E., von Tschirschnitz, M., Ring, J. Regul. Pept. (1993) [Pubmed]
  15. Oral toxicity of abamectin, boric acid, fipronil, and hydramethylnon to laboratory colonies of Argentine ants (Hymenoptera: Formicidae). Hooper-Bui, L.M., Rust, M.K. J. Econ. Entomol. (2000) [Pubmed]
  16. Sucrose octanoate toxicity to brown citrus aphid (Homoptera: Aphididae) and the parasitoid Lysiphlebus testaceipes (Hymenoptera: Aphidiidae). McKenzie, C.L., Weathersbee, A.A., Hunter, W.B., Puterka, G.J. J. Econ. Entomol. (2004) [Pubmed]
  17. Evidence for AT-transversion bias in wasp (Hymenoptera: Symphyta) mitochondrial genes and its implications for the origin of parasitism. Dowton, M., Austin, A.D. J. Mol. Evol. (1997) [Pubmed]
  18. A phylogeny of aphid parasitoids (Hymenoptera: Braconidae: Aphidiinae) inferred from mitochondrial NADH 1 dehydrogenase gene sequence. Smith, P.T., Kambhampati, S., Völkl, W., Mackauer, M. Mol. Phylogenet. Evol. (1999) [Pubmed]
  19. Individual hymenoptera venom compounds induce upregulation of the basophil activation marker ectonucleotide pyrophosphatase/phosphodiesterase 3 (CD203c) in sensitized patients. Binder, M., Fierlbeck, G., King, T., Valent, P., Bühring, H.J. Int. Arch. Allergy Immunol. (2002) [Pubmed]
  20. Single-locus complementary sex determination absent in Heterospilus prosopidis (Hymenoptera: Braconidae). Wu, Z., Hopper, K.R., Ode, P.J., Fuester, R.W., Tuda, M., Heimpel, G.E. Heredity (2005) [Pubmed]
  21. Genetics of Euglossini bees (Hymenoptera) in fragments of the Atlantic Forest in the region of Viçosa, MG. Waldschmidt, A.M., Lopes, L.A., Marco, P., Campos, L.A. Brazilian journal of biology = Revista brasleira de biologia. (2005) [Pubmed]
  22. The activities of 2-oxoglutarate dehydrogenase and pyruvate dehydrogenase in hearts and mammary glands from ruminants and non-ruminants. Read, G., Crabtree, B., Smith, G.H. Biochem. J. (1977) [Pubmed]
  23. Basophil releasability in patients with hymenoptera venom allergy. Radermecker, M.F., Leclercq, M.D., Mariz, S.D., Louis, R.E. Int. Arch. Allergy Immunol. (1993) [Pubmed]
  24. Immunologic and biochemical evaluation of the potency of whole insect body extracts. Wypych, J.I., Reisman, R.E., Elliott, W.B., Steger, R.J., Arbesman, C.E. J. Allergy Clin. Immunol. (1979) [Pubmed]
  25. In vitro allergy diagnosis: should we follow the flow? Ebo, D.G., Hagendorens, M.M., Bridts, C.H., Schuerwegh, A.J., De Clerck, L.S., Stevens, W.J. Clin. Exp. Allergy (2004) [Pubmed]
  26. Distribution of GABA-like immunoreactive neurons in insects suggests lineage homology. Witten, J.L., Truman, J.W. J. Comp. Neurol. (1998) [Pubmed]
  27. The effect of molecular structure on olfactory discrimination by the parasitoid Microplitis croceipes. Meiners, T., Wäckers, F., Lewis, W.J. Chem. Senses (2002) [Pubmed]
  28. Toxoneuron nigriceps polydnavirus encodes a putative aspartyl protease highly expressed in parasitized host larvae. Falabella, P., Varricchio, P., Gigliotti, S., Tranfaglia, A., Pennacchio, F., Malva, C. Insect Mol. Biol. (2003) [Pubmed]
  29. Concomitant augmentation of CD4+ CD45R+ suppressor/inducer subset and diminution of CD4+ CDw29+ helper/inducer subset during rush hyposensitization in hymenoptera venom allergy. Tilmant, L., Dessaint, J.P., Tsicopoulos, A., Tonnel, A.B., Capron, A. Clin. Exp. Immunol. (1989) [Pubmed]
  30. Kinetics of plasma cytokine levels in children hyposensitized with wasp venom. Ponvert, C., Le Courvoisier, C., Weill, B., Bloch, E., Paupe, J., Scheinmann, P. Cytokine (2001) [Pubmed]
  31. The cytochrome b region in the mitochondrial DNA of the ant Tetraponera rufoniger: sequence divergence in Hymenoptera may be associated with nucleotide content. Jermiin, L.S., Crozier, R.H. J. Mol. Evol. (1994) [Pubmed]
  32. Lymphocyte-mediated inhibition of platelet cytotoxic functions during Hymenoptera venom desensitization: characterization of a suppressive lymphokine. Tsicopoulos, A., Tonnel, A.B., Vorng, H., Joseph, M., Wallaert, B., Kusnierz, J.P., Pestel, J., Capron, A. Eur. J. Immunol. (1990) [Pubmed]
  33. Epidemiology of insect venom sensitivity in children and its correlation to clinical and atopic features. Novembre, E., Cianferoni, A., Bernardini, R., Veltroni, M., Ingargiola, A., Lombardi, E., Vierucci, A. Clin. Exp. Allergy (1998) [Pubmed]
  34. Serological methods in the diagnosis and management of human allergic disease. Hamilton, R.G., Adkinson, N.F. Critical reviews in clinical laboratory sciences. (1984) [Pubmed]
  35. The effects of temperature and dose of formic acid on treatment efficacy against Varroa destructor (Acari: Varroidae), a parasite of Apis mellifera (Hymenoptera: Apidae). Underwood, R.M., Currie, R.W. Exp. Appl. Acarol. (2003) [Pubmed]
  36. Influence of histamine controls on skin tests with hymenoptera venom. Tipton, W.R. Annals of allergy. (1980) [Pubmed]
  37. Immunoblot studies in allergic patients to hymenoptera venom before and during immunotherapy. Pereira Santos, M.C., Pedro, E., Spínola Santos, A., Branco Ferreira, M., Palma Carlos, M.L., Palma Carlos, A.G. Allergie et immunologie. (2005) [Pubmed]
 
WikiGenes - Universities