The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Optic Lobe

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Optic Lobe


High impact information on Optic Lobe

  • In this report I document some basic properties of the histamine receptors present on large monopolar cells isolated from blowfly optic lobes [4].
  • In tangential cells of crayfish optic lobes, a hyperpolarizing, biphasic synaptic potential is produced by the concurrent action of acetylcholine and gamma aminobutyric acid (GABA) [5].
  • Weak repo alleles were viable but affected glia in the optic lobe, resulting in a reversal in polarity of the electrophysiological to light in the adult [6].
  • Thereafter, beta-galactosidase activity is undetectable until the pupal stage when the prothoracic gland-corpora allata and the optic lobes are beta-galactosidase positive [7].
  • We demonstrate that Gcm and Gcm2 are expressed in both glial and neuronal precursors within the optic lobe [8].

Biological context of Optic Lobe


Anatomical context of Optic Lobe

  • In addition, gil mutants show drastic effects on photoreceptor axon guidance and optic lobe development [14].
  • Benzodiazepine recognition sites labeled "in vitro" with [3H]flunitrazepam ([3H]FNT) were present in highest concentration in the optic lobe and in lowest concentration in the medulla oblongata and spinal cord [15].
  • These phenotypic abnormalities reinforce the notion that nonA's ubiquitous expression has its most important consequences in the optic lobes, the thoracic ganglia, or both, depending in part on the nonA allele [16].
  • We conclude that synaptosomes from the squid optic lobe posses intact membranes and mechanisms to regulate intrasynaptosomal free [Ca(2+)], as well as caffeine sensitive Ca(2+) stores [17].
  • 2. MG 624, F3, F3A and F3B inhibited of 125I-alphaBungarotoxin (alphaBgtx) binding to neuronal chick optic lobe (COL) membranes, with nM affinity, but inhibited 125I-alphaBgtx binding to TE671 cell-expressed muscle-type AChR only at much higher concentrations [18].

Associations of Optic Lobe with chemical compounds


Gene context of Optic Lobe


Analytical, diagnostic and therapeutic context of Optic Lobe


  1. Neurotensin-like immunoreactivity in locust supraesophageal ganglion and optic lobes. Ammermüller, J., Oltrogge, M., Janssen-Bienhold, U. Brain Res. (1994) [Pubmed]
  2. Acute hypoxic hypoxia alters GABA(A) receptor modulation by allopregnanolone and pentobarbital in embryonic chick optic lobe. Rodríguez Gil, D.J., Mitridate de Novara, A., Fiszer de Plazas, S. Brain Res. (2002) [Pubmed]
  3. Neuropil pattern formation and regulation of cell adhesion molecules in Drosophila optic lobe development depend on synaptobrevin. Hiesinger, P.R., Reiter, C., Schau, H., Fischbach, K.F. J. Neurosci. (1999) [Pubmed]
  4. A histamine-activated chloride channel involved in neurotransmission at a photoreceptor synapse. Hardie, R.C. Nature (1989) [Pubmed]
  5. Acetylcholine and GABA mediate opposing actions on neuronal chloride channels in crayfish. Pfeiffer-Linn, C., Glantz, R.M. Science (1989) [Pubmed]
  6. repo encodes a glial-specific homeo domain protein required in the Drosophila nervous system. Xiong, W.C., Okano, H., Patel, N.H., Blendy, J.A., Montell, C. Genes Dev. (1994) [Pubmed]
  7. Spatial and temporal expression of the period gene in Drosophila melanogaster. Liu, X., Lorenz, L., Yu, Q.N., Hall, J.C., Rosbash, M. Genes Dev. (1988) [Pubmed]
  8. glial cells missing and gcm2 cell autonomously regulate both glial and neuronal development in the visual system of Drosophila. Chotard, C., Leung, W., Salecker, I. Neuron (2005) [Pubmed]
  9. Drosophila JAB1/CSN5 acts in photoreceptor cells to induce glial cells. Suh, G.S., Poeck, B., Chouard, T., Oron, E., Segal, D., Chamovitz, D.A., Zipursky, S.L. Neuron (2002) [Pubmed]
  10. Chromophore-assisted laser inactivation of patched protein switches cell fate in the larval visual system of Drosophila. Schmucker, D., Su, A.L., Beermann, A., Jäckle, H., Jay, D.G. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  11. Expression of a Drosophila melanogaster acetylcholine receptor-related gene in the central nervous system. Wadsworth, S.C., Rosenthal, L.S., Kammermeyer, K.L., Potter, M.B., Nelson, D.J. Mol. Cell. Biol. (1988) [Pubmed]
  12. Dpp and Hh signaling in the Drosophila embryonic eye field. Chang, T., Mazotta, J., Dumstrei, K., Dumitrescu, A., Hartenstein, V. Development (2001) [Pubmed]
  13. Analysis of cis-regulatory elements in the 5' flanking region of the Drosophila melanogaster choline acetyltransferase gene. Kitamoto, T., Ikeda, K., Salvaterra, P.M. J. Neurosci. (1992) [Pubmed]
  14. Giant lens, a gene involved in cell determination and axon guidance in the visual system of Drosophila melanogaster. Kretzschmar, D., Brunner, A., Wiersdorff, V., Pflugfelder, G.O., Heisenberg, M., Schneuwly, S. EMBO J. (1992) [Pubmed]
  15. Distribution and pharmacological properties of the GABAA/benzodiazepine/chloride ionophore receptor complex in the brain of the fish Anguilla anguilla. Corda, M.G., Longoni, B., Cau, A., Paci, S., Salvadori, S., Laudani, U., Biggio, G. J. Neurochem. (1989) [Pubmed]
  16. Bioassaying putative RNA-binding motifs in a protein encoded by a gene that influences courtship and visually mediated behavior in Drosophila: in vitro mutagenesis of nonA. Stanewsky, R., Fry, T.A., Reim, I., Saumweber, H., Hall, J.C. Genetics (1996) [Pubmed]
  17. Ca(2+) dynamics in synaptosomes isolated from the squid optic lobe. Benech, J.C., Lima, P.A., Sotelo, J.R., Brown, E.R. J. Neurosci. Res. (2000) [Pubmed]
  18. 4-Oxystilbene compounds are selective ligands for neuronal nicotinic alphaBungarotoxin receptors. Gotti, C., Balestra, B., Moretti, M., Rovati, G.E., Maggi, L., Rossoni, G., Berti, F., Villa, L., Pallavicini, M., Clementi, F. Br. J. Pharmacol. (1998) [Pubmed]
  19. Nitric oxide and cyclic GMP regulate retinal patterning in the optic lobe of Drosophila. Gibbs, S.M., Truman, J.W. Neuron (1998) [Pubmed]
  20. Nicotinic acetylcholine receptor from chick optic lobe. Norman, R.I., Mehraban, F., Barnard, E.A., Dolly, J.O. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  21. A Drosophila receptor tyrosine phosphatase expressed in the embryonic CNS and larval optic lobes is a member of the set of proteins bearing the "HRP" carbohydrate epitope. Desai, C.J., Popova, E., Zinn, K. J. Neurosci. (1994) [Pubmed]
  22. Identification of two novel Drosophila melanogaster histamine-gated chloride channel subunits expressed in the eye. Zheng, Y., Hirschberg, B., Yuan, J., Wang, A.P., Hunt, D.C., Ludmerer, S.W., Schmatz, D.M., Cully, D.F. J. Biol. Chem. (2002) [Pubmed]
  23. Corticosteroids are unable to protect against pseudorabies virus-induced tissue damage in the developing brain. Clase, A.C., Banfield, B.W. J. Virol. (2003) [Pubmed]
  24. Molecular analysis of the asense gene, a member of the achaete-scute complex of Drosophila melanogaster, and its novel role in optic lobe development. González, F., Romani, S., Cubas, P., Modolell, J., Campuzano, S. EMBO J. (1989) [Pubmed]
  25. A new gene encoding a putative transcription factor regulated by the Drosophila circadian clock. Rouyer, F., Rachidi, M., Pikielny, C., Rosbash, M. EMBO J. (1997) [Pubmed]
  26. Biological characterization of Drosophila Rapgap1, a GTPase activating protein for Rap1. Chen, F., Barkett, M., Ram, K.T., Quintanilla, A., Hariharan, I.K. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  27. The control of cell fate in the embryonic visual system by atonal, tailless and EGFR signaling. Daniel, A., Dumstrei, K., Lengyel, J.A., Hartenstein, V. Development (1999) [Pubmed]
  28. Effect of unilateral visual deprivation and visual stimulation on the activities of alkaline phosphatase, acid phosphatase, Na-+ --K-+ activated Mg-2-+ catalysed adenosine triphosphatase and on the content of sodium and potassium ions of the optic lobe of adult pigeon. Chakrabarti, T., Daginawala, H.F. J. Neurochem. (1975) [Pubmed]
  29. Binding of an antibody against a noncompact myelin protein to presumptive glial cells in the visual system of the crab Ucides cordatus. da Silva, S.F., Bressan, C.M., Cavalcante, L.A., Allodi, S. Glia (2003) [Pubmed]
  30. Serotonin sets the day state in the neurons that control coupling between the optic lobe circadian pacemakers in the cricket Gryllus bimaculatus. Saifullah, A.S., Tomioka, K. J. Exp. Biol. (2002) [Pubmed]
  31. NPY-like peptides occur in the nervous system and midgut of the migratory locust, Locusta migratoria and in the brain of the grey fleshfly, Sarcophaga bullata. Schoofs, L., Danger, J.M., Jegou, S., Pelletier, G., Huybrechts, R., Vaudry, H., De Loof, A. Peptides (1988) [Pubmed]
  32. Nitric oxide synthase inhibitor blocks acetylcholine induced increase in brain blood flow in rainbow trout. Söderström, V., Hylland, P., Nilsson, G.E. Neurosci. Lett. (1995) [Pubmed]
WikiGenes - Universities