The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

b-Oxoadipate     3-oxohexanedioic acid

Synonyms: b-Ketoadipate, AG-G-67237, CHEBI:37440, HMDB00398, NSC-18511, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of NSC18511

 

High impact information on NSC18511

 

Chemical compound and disease context of NSC18511

 

Biological context of NSC18511

  • Thus, the catIJF region, known to exchange genetic information with the pcaIJF region in the same chromosome directing isofunctional proteins associated with the beta-ketoadipate pathway, has avoided the evolutionary forces that conferred characteristics G + C content upon the other ben and cat genes in A. calcoaceticus [12].
  • The pcaIJ genes are transcribed divergently from the pcaDCHGB operon and are expressed in response to beta-ketoadipate [13].
  • The active site of dienelactone hydrolase (DLH), a microbial enzyme of the beta-ketoadipate pathway, has been conclusively located using a combination of crystallographic, biochemical, and genetic techniques [14].
  • The location of mucK on the chromosome appeared to be unique for genes associated with the benzoate branch of the beta-ketoadipate pathway in being close to the pca-qui-pob gene cluster (for p-hydroxybenzoate utilization) and distant from the functionally related ben-cat cluster [15].
  • Analysis of completed bacterial genomes indicates that the convergent beta-ketoadipate pathway and some aspects of its genetic organization are characteristic of rhodococci and related actinomycetes [16].
 

Associations of NSC18511 with other chemical compounds

 

Gene context of NSC18511

 

Analytical, diagnostic and therapeutic context of NSC18511

References

  1. Evolution of an enzyme active site: the structure of a new crystal form of muconate lactonizing enzyme compared with mandelate racemase and enolase. Hasson, M.S., Schlichting, I., Moulai, J., Taylor, K., Barrett, W., Kenyon, G.L., Babbitt, P.C., Gerlt, J.A., Petsko, G.A., Ringe, D. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  2. pWW174: a large plasmid from Acinetobacter calcoaceticus encoding benzene catabolism by the beta-ketoadipate pathway. Winstanley, C., Taylor, S.C., Williams, P.A. Mol. Microbiol. (1987) [Pubmed]
  3. Diverse organization of genes of the beta-ketoadipate pathway in members of the marine Roseobacter lineage. Buchan, A., Neidle, E.L., Moran, M.A. Appl. Environ. Microbiol. (2004) [Pubmed]
  4. The modified beta-ketoadipate pathway in Rhodococcus rhodochrous N75: enzymology of 3-methylmuconolactone metabolism. Cha, C.J., Cain, R.B., Bruce, N.C. J. Bacteriol. (1998) [Pubmed]
  5. Enzymes of the beta-ketoadipate pathway are inducible in Rhizobium and Agrobacterium spp. and constitutive in Bradyrhizobium spp. Parke, D., Ornston, L.N. J. Bacteriol. (1986) [Pubmed]
  6. The beta-ketoadipate pathway and the biology of self-identity. Harwood, C.S., Parales, R.E. Annu. Rev. Microbiol. (1996) [Pubmed]
  7. The ZbYME2 gene from the food spoilage yeast Zygosaccharomyces bailii confers not only YME2 functions in Saccharomyces cerevisiae, but also the capacity for catabolism of sorbate and benzoate, two major weak organic acid preservatives. Mollapour, M., Piper, P.W. Mol. Microbiol. (2001) [Pubmed]
  8. Media containing aromatic compounds induce peculiar proteins in Acinetobacter radioresistens, as revealed by proteome analysis. Giuffrida, M.G., Pessione, E., Mazzoli, R., Dellavalle, G., Barello, C., Conti, A., Giunta, C. Electrophoresis (2001) [Pubmed]
  9. Enzymes of the beta-ketoadipate pathway in Pseudomonas putida: kinetic and magnetic resonance studies of the cis,cis-muconate cycloisomerase catalyzed reaction. Ngai, K.L., Ornston, L.N., Kallen, R.G. Biochemistry (1983) [Pubmed]
  10. Discontinuities in the evolution of Pseudomonas putida cat genes. Houghton, J.E., Brown, T.M., Appel, A.J., Hughes, E.J., Ornston, L.N. J. Bacteriol. (1995) [Pubmed]
  11. Key aromatic-ring-cleaving enzyme, protocatechuate 3,4-dioxygenase, in the ecologically important marine Roseobacter lineage. Buchan, A., Collier, L.S., Neidle, E.L., Moran, M.A. Appl. Environ. Microbiol. (2000) [Pubmed]
  12. Unusual G + C content and codon usage in catIJF, a segment of the ben-cat supra-operonic cluster in the Acinetobacter calcoaceticus chromosome. Shanley, M.S., Harrison, A., Parales, R.E., Kowalchuk, G., Mitchell, D.J., Ornston, L.N. Gene (1994) [Pubmed]
  13. Supraoperonic clustering of pca genes for catabolism of the phenolic compound protocatechuate in Agrobacterium tumefaciens. Parke, D. J. Bacteriol. (1995) [Pubmed]
  14. Thiol protease-like active site found in the enzyme dienelactone hydrolase: localization using biochemical, genetic, and structural tools. Pathak, D., Ashley, G., Ollis, D. Proteins (1991) [Pubmed]
  15. mucK, a gene in Acinetobacter calcoaceticus ADP1 (BD413), encodes the ability to grow on exogenous cis,cis-muconate as the sole carbon source. Williams, P.A., Shaw, L.E. J. Bacteriol. (1997) [Pubmed]
  16. Catabolism of benzoate and phthalate in Rhodococcus sp. strain RHA1: redundancies and convergence. Patrauchan, M.A., Florizone, C., Dosanjh, M., Mohn, W.W., Davies, J., Eltis, L.D. J. Bacteriol. (2005) [Pubmed]
  17. Novel nuclear magnetic resonance spectroscopy methods demonstrate preferential carbon source utilization by Acinetobacter calcoaceticus. Gaines, G.L., Smith, L., Neidle, E.L. J. Bacteriol. (1996) [Pubmed]
  18. Enzymology of the beta-ketoadipate pathway in Trichosporon cutaneum. Powlowski, J.B., Ingebrand, J., Dagley, S. J. Bacteriol. (1985) [Pubmed]
  19. Benzoate degradation via the ortho pathway in Alcaligenes eutrophus is perturbed by succinate. Ampe, F., Uribelarrea, J.L., Aragao, G.M., Lindley, N.D. Appl. Environ. Microbiol. (1997) [Pubmed]
  20. A two-component monooxygenase catalyzes both the hydroxylation of p-nitrophenol and the oxidative release of nitrite from 4-nitrocatechol in Bacillus sphaericus JS905. Kadiyala, V., Spain, J.C. Appl. Environ. Microbiol. (1998) [Pubmed]
  21. Enhanced detection and characterization of protocatechuate 3,4-dioxygenase in Acinetobacter lwoffii K24 by proteomics using a column separation. Kahng, H.Y., Cho, K., Song, S.Y., Kim, S.J., Leem, S.H., Kim, S.I. Biochem. Biophys. Res. Commun. (2002) [Pubmed]
  22. Identification of the pcaRKF gene cluster from Pseudomonas putida: involvement in chemotaxis, biodegradation, and transport of 4-hydroxybenzoate. Harwood, C.S., Nichols, N.N., Kim, M.K., Ditty, J.L., Parales, R.E. J. Bacteriol. (1994) [Pubmed]
  23. Repression of 4-hydroxybenzoate transport and degradation by benzoate: a new layer of regulatory control in the Pseudomonas putida beta-ketoadipate pathway. Nichols, N.N., Harwood, C.S. J. Bacteriol. (1995) [Pubmed]
  24. Conservation of PcaQ, a transcriptional activator of pca genes for catabolism of phenolic compounds, in Agrobacterium tumefaciens and Rhizobium species. Parke, D. J. Bacteriol. (1996) [Pubmed]
  25. Metabolism of phenol and resorcinol in Trichosporon cutaneum. Gaal, A., Neujahr, H.Y. J. Bacteriol. (1979) [Pubmed]
  26. Catabolic versatility of aromatic compound-degrading halophilic bacteria. García, M.T., Ventosa, A., Mellado, E. FEMS Microbiol. Ecol. (2005) [Pubmed]
  27. Biodegradation of 8-anilino-1-naphthalenesulfonic acid by Pseudomonas aeruginosa. Valli Nachiyar, C., Suseela Rajakumar, G. J. Ind. Microbiol. Biotechnol. (2006) [Pubmed]
 
WikiGenes - Universities