The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

CHEBI:63220     [[[(2R,3S,5R)-5-(2-amino-6,8- dioxo-3,7...

Synonyms: LS-185903, AC1L32YE, C19967, 8-Oxo-dgtp, 8DG, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of 8-Oxodeoxyguanosine triphosphate


High impact information on 8-Oxodeoxyguanosine triphosphate

  • Microsequencing of DIPP revealed a 'MutT' domain, which in other contexts guards cellular integrity by dephosphorylating 8-oxo-dGTP, which causes AT to CG transversion mutations [6].
  • The MTH1 gene encodes an enzyme that hydrolyzes 8-oxo-dGTP to monophosphate in the nucleotide pool, thereby preventing occurrence of transversion mutations [7].
  • EpsilondA was more mutagenic than 8-oxodeoxyguanosine, which induced targeted G-->T transversions in HeLa cells [8].
  • Using this assay, which involves reversed-phase high-performance liquid chromatography and electrochemical detection, we have been unable to detect 8-oxo-dGTP in extracts of three different mutT mutants of E. coli, even after growth of the bacteria in the presence of hydrogen peroxide [2].
  • The bacterial MutT protein and its mammalian homolog have been shown to catalyze in vitro the hydrolysis of the oxidized deoxyguanosine nucleotide, 8-oxo-dGTP, to its corresponding monophosphate [2].

Chemical compound and disease context of 8-Oxodeoxyguanosine triphosphate


Biological context of 8-Oxodeoxyguanosine triphosphate


Anatomical context of 8-Oxodeoxyguanosine triphosphate


Associations of 8-Oxodeoxyguanosine triphosphate with other chemical compounds


Gene context of 8-Oxodeoxyguanosine triphosphate

  • P2N also resulted in the formation of 8-aminodeoxyguanosine and increased the level of 8-oxodeoxyguanosine in V79-hP-PST cells, but not in the parental V79-MZ cells, which do not show any sulfotransferase activity [23].
  • ytkD and mutT of Bacillus subtilis encode potential 8-oxo-dGTPases that can prevent the mutagenic effects of 8-oxo-dGTP [24].
  • The mutT gene product specifically hydrolyzes 8-oxo-dGTP to the monophosphate form while the mutM and the mutY gene products function to correct mispairs caused by incorporation of 8-oxoguanine into DNA [25].
  • Organisms possess 8-oxo-dGTPase, an enzyme that specifically degrades 8-oxo-dGTP to 8-oxo-dGMP [26].
  • Thus, our findings address that the insertion of 8-oxo-dG into KG-1 DNA is not due to the direct incorporation of exogenous 8-oxo-dG, but rather to the inaccurate incorporation of endogenous 8-oxo-dGTP by DNA polymerase beta [27].

Analytical, diagnostic and therapeutic context of 8-Oxodeoxyguanosine triphosphate


  1. Retrovirus-mediated expression of the base excision repair proteins, formamidopyrimidine DNA glycosylase or human oxoguanine DNA glycosylase, protects hematopoietic cells from N,N',N"-triethylenethiophosphoramide (thioTEPA)-induced toxicity in vitro and in vivo. Kobune, M., Xu, Y., Baum, C., Kelley, M.R., Williams, D.A. Cancer Res. (2001) [Pubmed]
  2. Assessing the metabolic function of the MutT 8-oxodeoxyguanosine triphosphatase in Escherichia coli by nucleotide pool analysis. Tassotto, M.L., Mathews, C.K. J. Biol. Chem. (2002) [Pubmed]
  3. Incorporation of the guanosine triphosphate analogs 8-oxo-dGTP and 8-NH2-dGTP by reverse transcriptases and mammalian DNA polymerases. Kamath-Loeb, A.S., Hizi, A., Kasai, H., Loeb, L.A. J. Biol. Chem. (1997) [Pubmed]
  4. Overexpression of human mutT homologue gene messenger RNA in renal-cell carcinoma: evidence of persistent oxidative stress in cancer. Okamoto, K., Toyokuni, S., Kim, W.J., Ogawa, O., Kakehi, Y., Arao, S., Hiai, H., Yoshida, O. Int. J. Cancer (1996) [Pubmed]
  5. Relationship between urinary 15-F2t-isoprostane and 8-oxodeoxyguanosine levels and breast cancer risk. Rossner, P., Gammon, M.D., Terry, M.B., Agrawal, M., Zhang, F.F., Teitelbaum, S.L., Eng, S.M., Gaudet, M.M., Neugut, A.I., Santella, R.M. Cancer Epidemiol. Biomarkers Prev. (2006) [Pubmed]
  6. A novel context for the 'MutT' module, a guardian of cell integrity, in a diphosphoinositol polyphosphate phosphohydrolase. Safrany, S.T., Caffrey, J.J., Yang, X., Bembenek, M.E., Moyer, M.B., Burkhart, W.A., Shears, S.B. EMBO J. (1998) [Pubmed]
  7. Spontaneous tumorigenesis in mice defective in the MTH1 gene encoding 8-oxo-dGTPase. Tsuzuki, T., Egashira, A., Igarashi, H., Iwakuma, T., Nakatsuru, Y., Tominaga, Y., Kawate, H., Nakao, K., Nakamura, K., Ide, F., Kura, S., Nakabeppu, Y., Katsuki, M., Ishikawa, T., Sekiguchi, M. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  8. Mutagenesis induced by a single 1,N6-ethenodeoxyadenosine adduct in human cells. Levine, R.L., Yang, I.Y., Hossain, M., Pandya, G.A., Grollman, A.P., Moriya, M. Cancer Res. (2000) [Pubmed]
  9. Cellular 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate pyrophosphohydrolase activity of human and mouse MTH1 proteins does not depend on the proliferation rate. Bialkowski, K., Kasprzak, K.S. Free Radic. Biol. Med. (2004) [Pubmed]
  10. Recognition of oxidatively modified bases within the biotin-binding site of avidin. Conners, R., Hooley, E., Clarke, A.R., Thomas, S., Brady, R.L. J. Mol. Biol. (2006) [Pubmed]
  11. Generation and elimination of 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate, a mutagenic substrate for DNA synthesis, in human cells. Hayakawa, H., Taketomi, A., Sakumi, K., Kuwano, M., Sekiguchi, M. Biochemistry (1995) [Pubmed]
  12. OGG1 polymorphisms and breast cancer risk. Rossner, P., Terry, M.B., Gammon, M.D., Zhang, F.F., Teitelbaum, S.L., Eng, S.M., Sagiv, S.K., Gaudet, M.M., Neugut, A.I., Santella, R.M. Cancer Epidemiol. Biomarkers Prev. (2006) [Pubmed]
  13. A novel assay of 8-oxo-2'-deoxyguanosine 5'-triphosphate pyrophosphohydrolase (8-oxo-dGTPase) activity in cultured cells and its use for evaluation of cadmium(II) inhibition of this activity. Bialkowski, K., Kasprzak, K.S. Nucleic Acids Res. (1998) [Pubmed]
  14. Inhibition of 8-oxo-2'-deoxyguanosine 5'-triphosphate pyrophosphohydrolase (8-oxo-dGTPase) activity of the antimutagenic human MTH1 protein by nucleoside 5'-diphosphates. Bialkowski, K., Kasprzak, K.S. Free Radic. Biol. Med. (2003) [Pubmed]
  15. The GT to GC single nucleotide polymorphism at the beginning of an alternative exon 2C of human MTH1 gene confers an amino terminal extension that functions as a mitochondrial targeting signal. Sakai, Y., Oda, H., Yoshimura, D., Furuichi, M., Kang, D., Iwai, S., Hara, T., Nakabeppu, Y. J. Mol. Med. (2006) [Pubmed]
  16. Evaluation of 8-oxodeoxyguanosine, typical oxidative DNA damage, in lymphocytes of ozone-treated arteriosclerotic patients. Foksinski, M., Bialkowski, K., Skiba, M., Ponikowska, I., Szmurlo, W., Olinski, R. Mutat. Res. (1999) [Pubmed]
  17. Modulation of novel DNA adducts during human uterine cervix cancer progression. Ravoori, S., Vadhanam, M.V., Davey, D.D., Srinivasan, C., Nagarajan, B., Gupta, R.C. Int. J. Oncol. (2006) [Pubmed]
  18. Structure of human MTH1, a Nudix family hydrolase that selectively degrades oxidized purine nucleoside triphosphates. Mishima, M., Sakai, Y., Itoh, N., Kamiya, H., Furuichi, M., Takahashi, M., Yamagata, Y., Iwai, S., Nakabeppu, Y., Shirakawa, M. J. Biol. Chem. (2004) [Pubmed]
  19. A novel HPLC procedure for the analysis of 8-oxoguanine in DNA. Herbert, K.E., Evans, M.D., Finnegan, M.T., Farooq, S., Mistry, N., Podmore, I.D., Farmer, P., Lunec, J. Free Radic. Biol. Med. (1996) [Pubmed]
  20. DNA replication fidelity with 8-oxodeoxyguanosine triphosphate. Pavlov, Y.I., Minnick, D.T., Izuta, S., Kunkel, T.A. Biochemistry (1994) [Pubmed]
  21. Comparative evaluation of the genotoxic properties of potassium bromate and potassium superoxide in V79 Chinese hamster cells. Speit, G., Haupter, S., Schütz, P., Kreis, P. Mutat. Res. (1999) [Pubmed]
  22. Induction of DNA-strand breaks in human peripheral blood lymphocytes and A549 lung cells by sodium dichromate: association with 8-oxo-2-deoxyguanosine formation and inter-individual variability. Hodges, N.J., Adám, B., Lee, A.J., Cross, H.J., Chipman, J.K. Mutagenesis (2001) [Pubmed]
  23. Human phenol sulfotransferases hP-PST and hM-PST activate propane 2-nitronate to a genotoxicant. Kreis, P., Brandner, S., Coughtrie, M.W., Pabel, U., Meinl, W., Glatt, H., Andrae, U. Carcinogenesis (2000) [Pubmed]
  24. YtkD and MutT protect vegetative cells but not spores of Bacillus subtilis from oxidative stress. Castellanos-Juárez, F.X., Alvarez-Alvarez, C., Yasbin, R.E., Setlow, B., Setlow, P., Pedraza-Reyes, M. J. Bacteriol. (2006) [Pubmed]
  25. Functional cooperation of MutT, MutM and MutY proteins in preventing mutations caused by spontaneous oxidation of guanine nucleotide in Escherichia coli. Tajiri, T., Maki, H., Sekiguchi, M. Mutat. Res. (1995) [Pubmed]
  26. Mouse MTH1 protein with 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphatase activity that prevents transversion mutation. cDNA cloning and tissue distribution. Kakuma, T., Nishida, J., Tsuzuki, T., Sekiguchi, M. J. Biol. Chem. (1995) [Pubmed]
  27. Exogenous 8-oxo-dG is not utilized for nucleotide synthesis but enhances the accumulation of 8-oxo-Gua in DNA through error-prone DNA synthesis. Kim, J.E., Hyun, J.W., Hayakawa, H., Choi, S., Choi, J., Chung, M.H. Mutat. Res. (2006) [Pubmed]
  28. Structural similarities between MutT and the C-terminal domain of MutY. Volk, D.E., House, P.G., Thiviyanathan, V., Luxon, B.A., Zhang, S., Lloyd, R.S., Gorenstein, D.G. Biochemistry (2000) [Pubmed]
  29. Evidence that a metabolite of equine estrogens, 4-hydroxyequilenin, induces cellular transformation in vitro. Pisha, E., Lui, X., Constantinou, A.I., Bolton, J.L. Chem. Res. Toxicol. (2001) [Pubmed]
  30. Site-specific mutagenesis using a gapped duplex vector: a study of translesion synthesis past 8-oxodeoxyguanosine in E. coli. Moriya, M., Ou, C., Bodepudi, V., Johnson, F., Takeshita, M., Grollman, A.P. Mutat. Res. (1991) [Pubmed]
  31. Controlled oxidation of calf thymus DNA to produce standard samples for 8-oxodeoxyguanosine analysis; effects of freeze-drying, storage and hydrolysis conditions. Wood, S.G., Gedik, C.M., Collins, A.R. Free Radic. Res. (2000) [Pubmed]
  32. No association between N7-methyldeoxyguanosine and 8-oxodeoxyguanosine levels in human lymphocyte DNA. Harrison, K.L., Crosbie, P.A., Agius, R.M., Barber, P.V., Carus, M., Margison, G.P., Povey, A.C. Mutat. Res. (2006) [Pubmed]
WikiGenes - Universities