The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

pipecolate     piperidine-2-carboxylic acid

Synonyms: Homoproline, Pipecolinate, Piperolinate, DL-Pipecolate, DL-Homoproline, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of pipecolic acids

 

Psychiatry related information on pipecolic acids

 

High impact information on pipecolic acids

  • The presence of increased concentrations of serum pipecolic acid and the bile acid intermediate, trihydroxycoprostanic acid, in the neonatal ALD patient are associated with a generalized diminution of peroxisomal activities that was not observed in the patient with X-linked ALD [7].
  • Although the level of the bile acid intermediate trihydroxycoprostanoic acid was slightly elevated in plasma, phytanic acid and L-pipecolic acid levels were normal, as was plasmalogen synthesis in cultured fibroblasts [8].
  • The plasma pipecolic acid concentration in two newborn infants with Zellweger syndrome at ages 4 and 10 days were 7.8 and 7.7 microM [9].
  • Surprisingly, L-pipecolic acid was elevated in plasma, and microscopy of the liver showed a reduced number of peroxisomes per cell and a larger average peroxisome size [10].
  • Patients with non-pyridoxine-dependent epilepsy had normal pipecolic acid concentrations in plasma and significantly lower concentrations in CSF [11].
 

Chemical compound and disease context of pipecolic acids

 

Biological context of pipecolic acids

 

Anatomical context of pipecolic acids

 

Associations of pipecolic acids with other chemical compounds

  • Levels of both pipecolic acid and certain metabolites shown to be elevated in patients with PNPO mutations should be measured, and therapeutic trials of pyridoxal phosphate as well as pyridoxine should be considered early in the course of the management of infants and young children with intractable seizures [23].
  • The results account for previously unattributed carbons in the two alkaloids and suggest the formation of an eight-carbon intermediate common to both alkaloids by acylation of malonate with pipecolic acid [24].
  • The phytopathogen Rhizoctonia leguminicola has previously been shown to incorporate pipecolic acid into the piperidine alkaloids 1-acetoxy-6-aminooctahydroindolizine (slaframine) and 3,4,5-trihydroxyoctahydro-1-pyrindine [24].
  • Most of these dipeptides containing a homoproline phosphonate residue (PipP) or a Pro phosphonate residue (ProP) at the P1 site are stable in a pH 7.8 buffer with half-lives of several hours to several days [25].
  • L-Pipecolic acid oxidase, a human enzyme essential for the degradation of L-pipecolic acid, is most similar to the monomeric sarcosine oxidases [26].
 

Gene context of pipecolic acids

 

Analytical, diagnostic and therapeutic context of pipecolic acids

References

  1. Localization of Refsum disease with increased pipecolic acidaemia to chromosome 10p by homozygosity mapping and carrier testing in a single nuclear family. Nadal, N., Rolland, M.O., Tranchant, C., Reutenauer, L., Gyapay, G., Warter, J.M., Mandel, J.L., Koenig, M. Hum. Mol. Genet. (1995) [Pubmed]
  2. Plasma levels of pipecolic acid in patients with chronic liver disease. Kawasaki, H., Hori, T., Nakajima, M., Takeshita, K. Hepatology (1988) [Pubmed]
  3. Isolation and amino acid sequence of a new 22-kDa FKBP-like peptidyl-prolyl cis/trans-isomerase of Escherichia coli. Similarity to Mip-like proteins of pathogenic bacteria. Rahfeld, J.U., Rücknagel, K.P., Stoller, G., Horne, S.M., Schierhorn, A., Young, K.D., Fischer, G. J. Biol. Chem. (1996) [Pubmed]
  4. Pipecolic acid is oxidized by renal and hepatic peroxisomes. Implications for Zellweger's cerebro-hepato-renal syndrome (CHRS). Zaar, K., Angermüller, S., Völkl, A., Fahimi, H.D. Exp. Cell Res. (1986) [Pubmed]
  5. Biosynthesis of the immunosuppressant immunomycin: the enzymology of pipecolate incorporation. Nielsen, J.B., Hsu, M.J., Byrne, K.M., Kaplan, L. Biochemistry (1991) [Pubmed]
  6. Experimental maternal hyperpipecolatemia decreases DNA in the mouse brain. Kim, J.S., Gutierrez, M.C., Giacobini, E., Sundberg, J.P. Int. J. Dev. Neurosci. (1986) [Pubmed]
  7. Peroxisomal defects in neonatal-onset and X-linked adrenoleukodystrophies. Goldfischer, S., Collins, J., Rapin, I., Coltoff-Schiller, B., Chang, C.H., Nigro, M., Black, V.H., Javitt, N.B., Moser, H.W., Lazarow, P.B. Science (1985) [Pubmed]
  8. Peroxisomal bifunctional enzyme deficiency. Watkins, P.A., Chen, W.W., Harris, C.J., Hoefler, G., Hoefler, S., Blake, D.C., Balfe, A., Kelley, R.I., Moser, A.B., Beard, M.E. J. Clin. Invest. (1989) [Pubmed]
  9. The significance of hyperpipecolatemia in Zellweger syndrome. Dancis, J., Hutzler, J. Am. J. Hum. Genet. (1986) [Pubmed]
  10. Atypical refsum disease with pipecolic acidemia and abnormal catalase distribution. Baumgartner, M.R., Jansen, G.A., Verhoeven, N.M., Mooyer, P.A., Jakobs, C., Roels, F., Espeel, M., Fourmaintraux, A., Bellet, H., Wanders, R.J., Saudubray, J.M. Ann. Neurol. (2000) [Pubmed]
  11. Pipecolic acid elevation in plasma and cerebrospinal fluid of two patients with pyridoxine-dependent epilepsy. Plecko, B., Stöckler-Ipsiroglu, S., Paschke, E., Erwa, W., Struys, E.A., Jakobs, C. Ann. Neurol. (2000) [Pubmed]
  12. Characterization of the Erwinia chrysanthemi osmoprotectant transporter gene ousA. Gouesbet, G., Trautwetter, A., Bonnassie, S., Wu, L.F., Blanco, C. J. Bacteriol. (1996) [Pubmed]
  13. Plasma levels of pipecolic acid, both L- and D-enantiomers, in patients with chronic liver diseases, especially hepatic encephalopathy. Fujita, T., Amuro, Y., Hada, T., Higashino, K. Clin. Chim. Acta (1999) [Pubmed]
  14. Treatment of infantile phytanic acid storage disease: clinical, biochemical and ultrastructural findings in two children treated for 2 years. Robertson, E.F., Poulos, A., Sharp, P., Manson, J., Wise, G., Jaunzems, A., Carter, R. Eur. J. Pediatr. (1988) [Pubmed]
  15. Pipecolic acid concentrations in brain tissue of nutritionally pyridoxine-deficient rats. Plecko, B., Hoeger, H., Jakobs, C., Struys, E., Stromberger, C., Leschnik, M., Muehl, A., Stoeckler-Ipsiroglu, S. J. Inherit. Metab. Dis. (2005) [Pubmed]
  16. Biosynthesis of pipecolic acid by RapL, a lysine cyclodeaminase encoded in the rapamycin gene cluster. Gatto, G.J., Boyne, M.T., Kelleher, N.L., Walsh, C.T. J. Am. Chem. Soc. (2006) [Pubmed]
  17. Spectroscopic analysis of the equilibrium and kinetic DNA binding properties of several actinomycin analogs. Shafer, R.H., Burnette, R.R., Mirau, P.A. Nucleic Acids Res. (1980) [Pubmed]
  18. Synthesis of N-glyoxyl prolyl and pipecolyl amides and thioesters and evaluation of their in vitro and in vivo nerve regenerative effects. Hamilton, G.S., Wu, Y.Q., Limburg, D.C., Wilkinson, D.E., Vaal, M.J., Li, J.H., Thomas, C., Huang, W., Sauer, H., Ross, D.T., Soni, R., Chen, Y., Guo, H., Howorth, P., Valentine, H., Liang, S., Spicer, D., Fuller, M., Steiner, J.P. J. Med. Chem. (2002) [Pubmed]
  19. L-pipecolic acid oxidation in the rabbit and cynomolgus monkey. Evidence for differing organellar locations and cofactor requirements in each species. Mihalik, S.J., Rhead, W.J. J. Biol. Chem. (1989) [Pubmed]
  20. Pathologic alterations in the brain and liver in hyperpipecolic acidemia. Challa, V.R., Geisinger, K.R., Burton, B.K. J. Neuropathol. Exp. Neurol. (1983) [Pubmed]
  21. Lysine metabolism in the rat brain: blood-brain barrier transport, formation of pipecolic acid and human hyperpipecolatemia. Chang, Y.F. J. Neurochem. (1978) [Pubmed]
  22. Iminoglycine transport system in synaptosomes and its interaction with enkephalins. Rhoads, D.E., Peterson, N.A., Raghupathy, E. Biochemistry (1984) [Pubmed]
  23. Pyridoxine-dependent seizures: new genetic and biochemical clues to help with diagnosis and treatment. Gospe, S.M. Curr. Opin. Neurol. (2006) [Pubmed]
  24. Biosynthesis of slaframine, (1S,6S,8aS)-1-acetoxy-6-aminooctahydroindolizine, a parasympathomimetic alkaloid of fungal origin. 3. Origin of the pyrrolidine ring. Clevenstine, E.C., Broquist, H.P., Harris, T.M. Biochemistry (1979) [Pubmed]
  25. Dipeptide phosphonates as inhibitors of dipeptidyl peptidase IV. Boduszek, B., Oleksyszyn, J., Kam, C.M., Selzler, J., Smith, R.E., Powers, J.C. J. Med. Chem. (1994) [Pubmed]
  26. L-Pipecolic acid oxidase, a human enzyme essential for the degradation of L-pipecolic acid, is most similar to the monomeric sarcosine oxidases. Dodt, G., Kim, D.G., Reimann, S.A., Reuber, B.E., McCabe, K., Gould, S.J., Mihalik, S.J. Biochem. J. (2000) [Pubmed]
  27. Conversion of pipecolic acid into lysine in Penicillium chrysogenum requires pipecolate oxidase and saccharopine reductase: characterization of the lys7 gene encoding saccharopine reductase. Naranjo, L., Martin de Valmaseda, E., Bañuelos, O., Lopez, P., Riaño, J., Casqueiro, J., Martin, J.F. J. Bacteriol. (2001) [Pubmed]
  28. Biosynthesis of lysine in Rhodotorula glutinis: role of pipecolic acid. Kurtz, M., Bhattacharjee, J.K. J. Gen. Microbiol. (1975) [Pubmed]
  29. Synthesis of thyrotropin-releasing hormone analogues. 2. Tripeptides structurally greatly differing from TRH with high central nervous system activity. Szirtes, T., Kisfaludy, L., Pálosi, E., Szporny, L. J. Med. Chem. (1986) [Pubmed]
  30. Synthesis and biological activity of selective pipecolic acid-based TNF-alpha converting enzyme (TACE) inhibitors. Letavic, M.A., Axt, M.Z., Barberia, J.T., Carty, T.J., Danley, D.E., Geoghegan, K.F., Halim, N.S., Hoth, L.R., Kamath, A.V., Laird, E.R., Lopresti-Morrow, L.L., McClure, K.F., Mitchell, P.G., Natarajan, V., Noe, M.C., Pandit, J., Reeves, L., Schulte, G.K., Snow, S.L., Sweeney, F.J., Tan, D.H., Yu, C.H. Bioorg. Med. Chem. Lett. (2002) [Pubmed]
  31. Increase in the rate of L-pipecolic acid production using lat-expressing Escherichia coli by lysP and yeiE amplification. Fujii, T., Aritoku, Y., Agematu, H., Tsunekawa, H. Biosci. Biotechnol. Biochem. (2002) [Pubmed]
  32. Hyperpipecolic acidemia: clinical and biochemical observations in two male siblings. Burton, B.K., Reed, S.P., Remy, W.T. J. Pediatr. (1981) [Pubmed]
  33. High-performance liquid chromatography determination of pipecolic acid after precolumn ninhydrin derivatization using domestic microwave. Moulin, M., Deleu, C., Larher, F.R., Bouchereau, A. Anal. Biochem. (2002) [Pubmed]
  34. Analysis of pipecolic acid in biological fluids using capillary gas chromatography with electron-capture detection and [2H11]pipecolic acid as internal standard. Zee, T., Stellaard, F., Jakobs, C. J. Chromatogr. (1992) [Pubmed]
  35. Stable isotope dilution analysis of pipecolic acid in cerebrospinal fluid, plasma, urine and amniotic fluid using electron capture negative ion mass fragmentography. Kok, R.M., Kaster, L., de Jong, A.P., Poll-Thé, B., Saudubray, J.M., Jakobs, C. Clin. Chim. Acta (1987) [Pubmed]
  36. Transport of pipecolic acid in adult and developing mouse brain. Kim, J.S., Giacobini, E. Neurochem. Res. (1985) [Pubmed]
 
WikiGenes - Universities