The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

laurate     dodecanoic acid

Synonyms: vulvate, dodecylate, Dodecanoate, Laurinsaeure, laurostearate, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of lauric acid

 

High impact information on lauric acid

  • Spectra of albumin complexes with the 12-carbon saturated fatty acid, lauric acid, had several narrow laurate carboxyl peaks at 35 degrees C, indicating longer lifetimes (tau much greater than 66 msec) in the different binding sites [6].
  • Similarly, DCs treated with lauric acid show increased T cell activation capacity, whereas docosahexaenoic acid inhibits T cell activation induced by LPS-treated DCs [7].
  • Together, these results demonstrate that lauric acid activates TLR2 dimers as well as TLR4 for which respective bacterial agonists require acylated fatty acids, whereas DHA inhibits the activation of all TLRs tested [8].
  • However, neither lauric acid nor DHA affected the heterodimerization of TLR2 with TLR6 as well as the homodimerization of TLR4 as determined by co-immunoprecipitation assays in 293T cells in which these TLRs were transiently overexpressed [8].
  • Using D-erythro-sphingosine and lauric acid as substrates, the reaction followed normal Michaelis-Menten kinetics [9].
 

Chemical compound and disease context of lauric acid

 

Biological context of lauric acid

 

Anatomical context of lauric acid

 

Associations of lauric acid with other chemical compounds

 

Gene context of lauric acid

  • These results demonstrate that NFkappaB activation and COX-2 expression induced by lauric acid are at least partly mediated through the TLR4/PI3K/AKT signaling pathway [29].
  • In contrast, COX-2 expression by TLR2 or TRL4 agonist was potentiated by lauric acid, a saturated fatty acid [30].
  • Human CYP2E1 had the highest lauric acid (omega-1)-hydroxylation activity and also had catalytic properties similar to those of rat CYP2E1 [31].
  • Results of docking of a common substrate, lauric acid, into the binding site of both CYP4A11 and CYP102 and molecular dynamics simulations provided additional support for this hypothesis [32].
  • Drosophila melanogaster CYP6A8, an insect P450 that catalyzes lauric acid (omega-1)-hydroxylation [33].
 

Analytical, diagnostic and therapeutic context of lauric acid

References

  1. Induction of cell-mediated immunity to chemically modified antigens in guinea pigs. II. The interaction between lipid-conjugated antigens, macrophages, and T lymphocytes. Dailey, M.O., Post, W., Hunter, R.L. J. Immunol. (1977) [Pubmed]
  2. Studies on the composition of adjuvants which selectively enhance delayed-type hypersensitivity to lipid conjugated protein antigens. Champlin, R., Hunter, R.L. J. Immunol. (1975) [Pubmed]
  3. A novel method for rapidly diagnosing the causes of diarrhoea. Probert, C.S., Jones, P.R., Ratcliffe, N.M. Gut (2004) [Pubmed]
  4. Expression and characterization of the two flavodoxin proteins of Bacillus subtilis, YkuN and YkuP: biophysical properties and interactions with cytochrome P450 BioI. Lawson, R.J., von Wachenfeldt, C., Haq, I., Perkins, J., Munro, A.W. Biochemistry (2004) [Pubmed]
  5. In vitro and in vivo evaluations of the activities of lauric acid monoester formulations against Staphylococcus aureus. Rouse, M.S., Rotger, M., Piper, K.E., Steckelberg, J.M., Scholz, M., Andrews, J., Patel, R. Antimicrob. Agents Chemother. (2005) [Pubmed]
  6. Medium-chain fatty acid binding to albumin and transfer to phospholipid bilayers. Hamilton, J.A. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  7. Saturated and polyunsaturated fatty acids reciprocally modulate dendritic cell functions mediated through TLR4. Weatherill, A.R., Lee, J.Y., Zhao, L., Lemay, D.G., Youn, H.S., Hwang, D.H. J. Immunol. (2005) [Pubmed]
  8. Saturated fatty acid activates but polyunsaturated fatty acid inhibits Toll-like receptor 2 dimerized with Toll-like receptor 6 or 1. Lee, J.Y., Zhao, L., Youn, H.S., Weatherill, A.R., Tapping, R., Feng, L., Lee, W.H., Fitzgerald, K.A., Hwang, D.H. J. Biol. Chem. (2004) [Pubmed]
  9. The reverse activity of human acid ceramidase. Okino, N., He, X., Gatt, S., Sandhoff, K., Ito, M., Schuchman, E.H. J. Biol. Chem. (2003) [Pubmed]
  10. Growth of group IV mycobacteria on medium containing various saturated and unsaturated fatty acids. Saito, H., Tomioka, H., Yoneyama, T. Antimicrob. Agents Chemother. (1984) [Pubmed]
  11. Hormonal and substrate regulation of 3-thia fatty acid metabolism in Morris 7800 C1 hepatoma cells. Hvattum, E., Grav, H.J., Bremer, J. Biochem. J. (1993) [Pubmed]
  12. Equivalence of lauric acid and glycerol monolaurate as inhibitors of signal transduction in Staphylococcus aureus. Ruzin, A., Novick, R.P. J. Bacteriol. (2000) [Pubmed]
  13. Isoprenoid quinone content and cellular fatty acid composition of Campylobacter species. Moss, C.W., Kai, A., Lambert, M.A., Patton, C. J. Clin. Microbiol. (1984) [Pubmed]
  14. Fatty acid in lipopolysaccharides of Salmonella species grown at low temperature. Identification and position. Wollenweber, H.W., Schlecht, S., Lüderitz, O., Rietschel, E.T. Eur. J. Biochem. (1983) [Pubmed]
  15. Autocatalytic mechanism and consequences of covalent heme attachment in the cytochrome P4504A family. LeBrun, L.A., Hoch, U., Ortiz de Montellano, P.R. J. Biol. Chem. (2002) [Pubmed]
  16. Medium chain fatty acids as specific substrates for diglyceride acyltransferase in cultured hepatocytes. Mayorek, N., Bar-Tana, J. J. Biol. Chem. (1983) [Pubmed]
  17. The extracellular control of intracellular aspirin hydrolysis. Costello, P.B., Green, F.A. Arthritis Rheum. (1987) [Pubmed]
  18. Cassette mutagenesis of a potential substrate recognition region of cytochrome P450 2C2. Straub, P., Lloyd, M., Johnson, E.F., Kemper, B. J. Biol. Chem. (1993) [Pubmed]
  19. Prostaglandin and fatty acid omega- and (omega-1)-oxidation in rabbit lung. Acetylenic fatty acid mechanism-based inactivators as specific inhibitors. Muerhoff, A.S., Williams, D.E., Reich, N.O., CaJacob, C.A., Ortiz de Montellano, P.R., Masters, B.S. J. Biol. Chem. (1989) [Pubmed]
  20. Purification and properties of cytochrome P-450 obtained from liver microsomes of untreated rats by lauric acid affinity chromatography. Gibson, G.G., Schenkman, J.B. J. Biol. Chem. (1978) [Pubmed]
  21. Free acetate production by rat hepatocytes during peroxisomal fatty acid and dicarboxylic acid oxidation. Leighton, F., Bergseth, S., Rørtveit, T., Christiansen, E.N., Bremer, J. J. Biol. Chem. (1989) [Pubmed]
  22. Photoactivated azido fatty acid irreversibly inhibits anion and proton transport through the mitochondrial uncoupling protein. Jezek, P., Hanus, J., Semrad, C., Garlid, K.D. J. Biol. Chem. (1996) [Pubmed]
  23. A possible role for plasmalogens in protecting animal cells against photosensitized killing. Zoeller, R.A., Morand, O.H., Raetz, C.R. J. Biol. Chem. (1988) [Pubmed]
  24. Identification by in vitro mutagenesis of the interaction of two segments of C2MstC1, a chimera of cytochromes P450 2C2 and P450 2C1. Ramarao, M.K., Straub, P., Kemper, B. J. Biol. Chem. (1995) [Pubmed]
  25. Cloning, expression in yeast, and functional characterization of CYP81B1, a plant cytochrome P450 that catalyzes in-chain hydroxylation of fatty acids. Cabello-Hurtado, F., Batard, Y., Salaün, J.P., Durst, F., Pinot, F., Werck-Reichhart, D. J. Biol. Chem. (1998) [Pubmed]
  26. The catalytic site of cytochrome P4504A11 (CYP4A11) and its L131F mutant. Dierks, E.A., Zhang, Z., Johnson, E.F., de Montellano, P.R. J. Biol. Chem. (1998) [Pubmed]
  27. A new type of serine-containing glycopeptidolipid from Mycobacterium xenopi. Rivière, M., Puzo, G. J. Biol. Chem. (1991) [Pubmed]
  28. Major differences in the specificity and regulation of mouse renal cytochrome P-450-dependent monooxygenases. A comparison of xenobiotic and endogenous substrates. Hawke, R.L., Welch, R.M. Mol. Pharmacol. (1985) [Pubmed]
  29. Reciprocal modulation of Toll-like receptor-4 signaling pathways involving MyD88 and phosphatidylinositol 3-kinase/AKT by saturated and polyunsaturated fatty acids. Lee, J.Y., Ye, J., Gao, Z., Youn, H.S., Lee, W.H., Zhao, L., Sizemore, N., Hwang, D.H. J. Biol. Chem. (2003) [Pubmed]
  30. Differential modulation of Toll-like receptors by fatty acids: preferential inhibition by n-3 polyunsaturated fatty acids. Lee, J.Y., Plakidas, A., Lee, W.H., Heikkinen, A., Chanmugam, P., Bray, G., Hwang, D.H. J. Lipid Res. (2003) [Pubmed]
  31. Multiple forms of human P450 expressed in Saccharomyces cerevisiae. Systematic characterization and comparison with those of the rat. Imaoka, S., Yamada, T., Hiroi, T., Hayashi, K., Sakaki, T., Yabusaki, Y., Funae, Y. Biochem. Pharmacol. (1996) [Pubmed]
  32. Homology modeling and substrate binding study of human CYP4A11 enzyme. Chang, Y.T., Loew, G.H. Proteins (1999) [Pubmed]
  33. Drosophila melanogaster CYP6A8, an insect P450 that catalyzes lauric acid (omega-1)-hydroxylation. Helvig, C., Tijet, N., Feyereisen, R., Walker, F.A., Restifo, L.L. Biochem. Biophys. Res. Commun. (2004) [Pubmed]
  34. Enhanced electron transfer and lauric acid hydroxylation by site-directed mutagenesis of CYP119. Koo, L.S., Immoos, C.E., Cohen, M.S., Farmer, P.J., Ortiz de Montellano, P.R. J. Am. Chem. Soc. (2002) [Pubmed]
  35. Inhibition of phospholipase D alpha by N-acylethanolamines. Austin-Brown, S.L., Chapman, K.D. Plant Physiol. (2002) [Pubmed]
  36. Tumor necrosis factor induces necrosis of human carcinoma xenografts in the presence of tricyclodecan-9-yl-xanthogenate and lauric acid. Amtmann, E., Sauer, G. Int. J. Cancer (1990) [Pubmed]
  37. Fatty acid-induced cholecystokinin secretion and changes in intracellular Ca2+ in two enteroendocrine cell lines, STC-1 and GLUTag. Sidhu, S.S., Thompson, D.G., Warhurst, G., Case, R.M., Benson, R.S. J. Physiol. (Lond.) (2000) [Pubmed]
  38. Segmental small intestinal allografts in the dog. I. Morphological and functional indices of rejection. Dennison, A.R., Collin, J., Watkins, R.M., Millard, P.R., Morris, P.J. Transplantation (1987) [Pubmed]
 
WikiGenes - Universities