The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Cifenline     2-(2,2-diphenylcyclopropyl)- 4,5-dihydro-1H...

Synonyms: Cibenzolina, Cibenzoline, Cibenzolinum, CHEMBL87045, SureCN122806, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Cifenline


Psychiatry related information on Cifenline


High impact information on Cifenline


Chemical compound and disease context of Cifenline


Biological context of Cifenline


Anatomical context of Cifenline


Associations of Cifenline with other chemical compounds

  • The effect of class I anti-arrhythmic drugs, cibenzoline, mexiletine and flecainide, on the delayed rectifier potassium current (IK) in guinea-pig ventricular myocytes was studied using whole cell voltage clamp techniques and under blockade of the L-type calcium current by 5 microM nitrendipine [20].
  • Modulation by class Ia antiarrhythmic drugs, cibenzoline and disopyramide, of the pacemaking activity and the underlying ionic currents in rat sino-atrial nodal cells was investigated using current-clamp and whole-cell patch-clamp techniques [21].
  • Employing an incremental dose titration protocol, cibenzoline (130 mg twice daily and 160 mg twice daily) and quinidine (300 mg every 6 hours and 400 mg every 6 hours) were administered for 7 days at each dose level, with preceding washout periods [22].
  • Stereoselective metabolism of cibenzoline succinate, an oral antiarrhythmic drug, was investigated on hepatic microsomes from humans and rats and microsomes from cells expressing human cytochrome P450s (CYPs) [23].
  • In the isolated pancreas perfused in the presence of a slightly stimulating glucose concentration (8.3 mM), cibenzoline (2 and 6 microM) elicited a progressive and sustained insulin response in a concentration-dependent manner [24].

Gene context of Cifenline

  • These results provide evidence that CYP3A and CYP2D play a major role in the stereoselective metabolism of cibenzoline in humans and male rats [23].
  • Stereoselective metabolism of cibenzoline, an antiarrhythmic drug, by human and rat liver microsomes: possible involvement of CYP2D and CYP3A [23].
  • In contrast, cibenzoline inhibited equally Kir6.2DeltaC26 and Kir6.2DeltaC26 + SUR1 channels, in a dose-dependent manner, the half-maximal concentrations of channel inhibition being 22.2 +/- 6.1 and 30.9 +/- 9.4 microM, respectively [25].
  • The antiarrhythmic agent cibenzoline inhibits KATP channels by binding to Kir6.2 [25].
  • A similar IC50 value of 2.5 microM (h = 1.2 at -60 mV under symmetrical approximately 150 mM K+) was observed for cibenzoline induced block of KATP channels [26].

Analytical, diagnostic and therapeutic context of Cifenline


  1. Antiarrhythmic efficacy and hemodynamic effects of cibenzoline in patients with nonsustained ventricular tachycardia and left ventricular dysfunction. Seals, A.A., Haider, R., Leon, C., Francis, M., Young, J.B., Roberts, R., Pratt, C.M. Circulation (1987) [Pubmed]
  2. Cibenzoline for treatment of ventricular arrhythmias: a double-blind placebo-controlled study. Kostis, J.B., Krieger, S., Moreyra, A., Cosgrove, N. J. Am. Coll. Cardiol. (1984) [Pubmed]
  3. Cibenzoline transforms random re-entry into ordered re-entry in the atria. Brugada, J., Gürsoy, S., Brugada, P., Atié, J., Guiraudon, G., Andries, E. Eur. Heart J. (1993) [Pubmed]
  4. Decrease in the spatial dispersion at the termination of atrial fibrillation by intravenous cibenzoline. Kakugawa, H., Shimizu, A., Yamagata, T., Esato, M., Ueyama, T., Yoshiga, Y., Kanemoto, M., Matsuzaki, M. Circ. J. (2003) [Pubmed]
  5. Class Ia antiarrhythmic drug cibenzoline: a new approach to the medical treatment of hypertrophic obstructive cardiomyopathy. Hamada, M., Shigematsu, Y., Ikeda, S., Hara, Y., Okayama, H., Kodama, K., Ochi, T., Hiwada, K. Circulation (1997) [Pubmed]
  6. Clinical efficacy and electrophysiologic effects of cibenzoline therapy in patients with ventricular arrhythmias. Browne, K.F., Prystowsky, E.N., Zipes, D.P., Chilson, D.A., Heger, J.J. J. Am. Coll. Cardiol. (1984) [Pubmed]
  7. Using the right drug: a treatment algorithm for regular supraventricular tachycardias. Lévy, S., Ricard, P. Eur. Heart J. (1997) [Pubmed]
  8. Cibenzoline versus flecainide in the prevention of paroxysmal atrial arrhythmias: a double-blind randomized study. Babuty, D., D'Hautefeuille, B., Scheck, F., Mycinsky, C., Pruvost, P., Peraudeau, P. Journal of clinical pharmacology. (1995) [Pubmed]
  9. QT-prolonging class I drug, disopyramide, does not aggravate but suppresses adrenaline-induced arrhythmias. Comparison with cibenzoline and pilsicainide. Miyamoto, S., Zhu, B., Teramatsu, T., Aye, N.N., Hashimoto, K. Eur. J. Pharmacol. (2000) [Pubmed]
  10. Cibenzoline for high-frequency ventricular arrhythmias: a short-term comparison with quinidine and a long-term follow-up. Palakurthy, P.R., Maldonado, C., Sohi, G., Flowers, N.C. Journal of clinical pharmacology. (1987) [Pubmed]
  11. Class I antiarrhythmic drugs alter the severity of myocardial stunning by modulating ATP-sensitive K+ channels in guinea pig ventricular muscles. Shigematsu, S., Sato, T., Arita, M. Naunyn Schmiedebergs Arch. Pharmacol. (1998) [Pubmed]
  12. Effect of renal impairment on the pharmacokinetics of cibenzoline. Massarella, J.W., Khoo, K.C., Aogaichi, K., Di Persio, D., Smith, M., Kluger, J., Chow, M.S. Clin. Pharmacol. Ther. (1988) [Pubmed]
  13. Age and cibenzoline disposition. Brazzell, R.K., Rees, M.M., Khoo, K.C., Szuna, A.J., Sandor, D., Hannigan, J. Clin. Pharmacol. Ther. (1984) [Pubmed]
  14. Single infusion of intravenous cibenzoline in the treatment of supraventricular tachyarrhythmias following heart surgery. A double-blind placebo-controlled parallel study. Ollitrault, J., Quilliet, L., Scheck, F., Lelong, B., Richard, A., Jarry, G., Guize, L. Eur. Heart J. (1994) [Pubmed]
  15. Inhibition of the myocardial Ca2+ inward current by the class 1 antiarrhythmic agent, cibenzoline. Holck, M., Osterrieder, W. Br. J. Pharmacol. (1986) [Pubmed]
  16. Characterization of the class I antiarrhythmic activity of cibenzoline succinate in guinea pig papillary muscle. Arena, J.P., McArdle, J.J., Laxminarayan, S. J. Pharmacol. Exp. Ther. (1987) [Pubmed]
  17. Electrophysiological study of cibenzoline in voltage-clamped rabbit sinoatrial node preparations. Kotake, H., Matsuoka, S., Ogino, K., Takami, T., Hasegawa, J., Mashiba, H. J. Pharmacol. Exp. Ther. (1987) [Pubmed]
  18. Inhibition of the ATP-sensitive potassium channel by class I antiarrhythmic agent, cibenzoline, in rat pancreatic beta-cells. Kakei, M., Nakazaki, M., Kamisaki, T., Nagayama, I., Fukamachi, Y., Tanaka, H. Br. J. Pharmacol. (1993) [Pubmed]
  19. Block of pancreatic ATP-sensitive K+ channels and insulinotrophic action by the antiarrhythmic agent, cibenzoline. Ishida-Takahashi, A., Horie, M., Tsuura, Y., Ishida, H., Ai, T., Sasayama, S. Br. J. Pharmacol. (1996) [Pubmed]
  20. Comparison of the effects of class I anti-arrhythmic drugs, cibenzoline, mexiletine and flecainide, on the delayed rectifier K+ current of guinea-pig ventricular myocytes. Wang, D.W., Kiyosue, T., Sato, T., Arita, M. J. Mol. Cell. Cardiol. (1996) [Pubmed]
  21. Comparative actions of cibenzoline and disopyramide on I(Kr) and I(Ks) currents in rat sino-atrial nodal cells. Satoh, H. Eur. J. Pharmacol. (2000) [Pubmed]
  22. Comparative efficacy and safety of oral cibenzoline and quinidine in ventricular arrhythmias: a randomized crossover study. Wasty, N., Saksena, S., Barr, M.J. Am. Heart J. (1985) [Pubmed]
  23. Stereoselective metabolism of cibenzoline, an antiarrhythmic drug, by human and rat liver microsomes: possible involvement of CYP2D and CYP3A. Niwa, T., Shiraga, T., Mitani, Y., Terakawa, M., Tokuma, Y., Kagayama, A. Drug Metab. Dispos. (2000) [Pubmed]
  24. Evidence for a direct stimulatory effect of cibenzoline on insulin secretion in rats. Bertrand, G., Gross, R., Petit, P., Loubatières-Mariani, M.M., Ribes, G. Eur. J. Pharmacol. (1992) [Pubmed]
  25. The antiarrhythmic agent cibenzoline inhibits KATP channels by binding to Kir6.2. Mukai, E., Ishida, H., Horie, M., Noma, A., Seino, Y., Takano, M. Biochem. Biophys. Res. Commun. (1998) [Pubmed]
  26. Comparative studies of ATP sensitive potassium channels in heart and pancreatic beta cells using Vaughan-Williams class Ia antiarrhythmics. Horie, M., Hayashi, S., Yuzuki, Y., Sasayama, S. Cardiovasc. Res. (1992) [Pubmed]
  27. Acute, single, intravenous doses of cibenzoline: an evaluation of safety, tolerance, and hemodynamic effects. Humen, D.P., Lesoway, R., Kostuk, W.J. Clin. Pharmacol. Ther. (1987) [Pubmed]
  28. Neuromuscular blockade with acute respiratory failure in a patient receiving cibenzoline. Similowski, T., Straus, C., Attali, V., Girard, F., Philippe, F., Deray, G., Thomas, D., Derenne, J.P. Thorax (1997) [Pubmed]
WikiGenes - Universities