The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

AGN-PC-00QLAB     (2,3-dihydroxy-4-oxo- pentoxy)phosphonic acid

Synonyms: CTK8H4143, AC1L19OT, 190079-18-6, (2,3-DIHYDROXY-4-OXO-PENTOXY)PHOSPHONIC ACID
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of DXP


High impact information on DXP

  • The occurrence of genes specific to the DXP pathway is restricted to plastid-bearing eukaryotes, indicating that these genes were acquired from the cyanobacterial ancestor of plastids [6].
  • The evolutionary history of the enzymes involved in both routes and the phylogenetic distribution of their genes across genomes suggest that the mevalonate pathway is germane to archaebacteria, that the DXP pathway is germane to eubacteria, and that eukaryotes have inherited their genes for IPP biosynthesis from prokaryotes [6].
  • Human Vgamma9Vdelta2 T cells recognize nonpeptidic Ags generated by the 1-deoxy-d-xylulose 5-phosphate (many eubacteria, algae, plants, and Apicomplexa) and mevalonate (eukaryotes, archaebacteria, and certain eubacteria) pathways of isoprenoid synthesis [7].
  • Transcript levels of mRNA from 1-deoxy-D-xylulose 5-phosphate reductoisomerase (PcDXR), isoprene synthase (PcISPS), and phytoene synthase (PcPSY) showed strong seasonal variations in leaves of Grey poplar (Populus x canescens [Aiton] Sm.). These changes were dependent on the developmental stage and were strongly correlated to temperature and light [8].
  • Functional analysis of the final steps of the 1-deoxy-D-xylulose 5-phosphate (DXP) pathway to isoprenoids in plants using virus-induced gene silencing [9].

Chemical compound and disease context of DXP


Biological context of DXP


Associations of DXP with other chemical compounds


Gene context of DXP

  • It is known, however, that the first reaction completely specific to the pathway is the conversion of 1-deoxy-D-xylulose 5-phosphate (DXP) into MEP by the enzyme DXP reductoisomerase (DXR) [20].
  • It was intended to isolate the 1-deoxy-D-xylulose 5-phosphate (DXP) reductoisomerase gene (dxr), as this gene encodes the enzyme which catalyzes a pathway-specific, indicative step of this pathway [21].
  • When combined with a cDNA encoding deoxyxylulose-5-phosphate synthase (dxs), the initial enzyme of the DOXP pathway, the individual salutary effects of lytB and dxs were multiplied [22].
  • The first reaction of IPP biosynthesis in E. coli is the formation of 1-deoxy-D-xylulose-5-phosphate (DXP), catalyzed by DXP synthase and encoded by dxs [23].
  • 2-C-Methyl-D-erythritol-4-phosphate synthase (MEP synthase) catalyzes the rearrangement/reduction of 1-D-deoxyxylulose-5-phosphate (DXP) to methylerythritol-4-phosphate (MEP) as the first pathway-specific reaction in the MEP biosynthetic pathway to isoprenoids [24].

Analytical, diagnostic and therapeutic context of DXP


  1. A 1-deoxy-D-xylulose 5-phosphate reductoisomerase catalyzing the formation of 2-C-methyl-D-erythritol 4-phosphate in an alternative nonmevalonate pathway for terpenoid biosynthesis. Takahashi, S., Kuzuyama, T., Watanabe, H., Seto, H. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  2. Kinetic and chemical mechanism of Mycobacterium tuberculosis 1-deoxy-D-xylulose-5-phosphate isomeroreductase. Argyrou, A., Blanchard, J.S. Biochemistry (2004) [Pubmed]
  3. Rhodobacter capsulatus 1-deoxy-D-xylulose 5-phosphate synthase: steady-state kinetics and substrate binding. Eubanks, L.M., Poulter, C.D. Biochemistry (2003) [Pubmed]
  4. Stereochemistry of the reduction step mediated by recombinant 1-deoxy-D-xylulose 5-phosphate isomeroreductase. Proteau, P.J., Woo, Y.H., Williamson, R.T., Phaosiri, C. Org. Lett. (1999) [Pubmed]
  5. Flavin adenine dinucleotide-dependent 4-phospho-D-erythronate dehydrogenase is responsible for the 4-phosphohydroxy-L-threonine pathway in vitamin B6 biosynthesis in Sinorhizobium meliloti. Tazoe, M., Ichikawa, K., Hoshino, T. J. Bacteriol. (2006) [Pubmed]
  6. Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Lange, B.M., Rujan, T., Martin, W., Croteau, R. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  7. Drug-induced expansion and differentiation of V gamma 9V delta 2 T cells in vivo: the role of exogenous IL-2. Casetti, R., Perretta, G., Taglioni, A., Mattei, M., Colizzi, V., Dieli, F., D'Offizi, G., Malkovsky, M., Poccia, F. J. Immunol. (2005) [Pubmed]
  8. Diurnal and seasonal variation of isoprene biosynthesis-related genes in grey poplar leaves. Mayrhofer, S., Teuber, M., Zimmer, I., Louis, S., Fischbach, R.J., Schnitzler, J.P. Plant Physiol. (2005) [Pubmed]
  9. Functional analysis of the final steps of the 1-deoxy-D-xylulose 5-phosphate (DXP) pathway to isoprenoids in plants using virus-induced gene silencing. Page, J.E., Hause, G., Raschke, M., Gao, W., Schmidt, J., Zenk, M.H., Kutchan, T.M. Plant Physiol. (2004) [Pubmed]
  10. Isolation of the dxr gene of Zymomonas mobilis and characterization of the 1-deoxy-D-xylulose 5-phosphate reductoisomerase. Grolle, S., Bringer-Meyer, S., Sahm, H. FEMS Microbiol. Lett. (2000) [Pubmed]
  11. Transcriptome analysis reveals novel features of the molecular events occurring in the laticifers of Hevea brasiliensis (para rubber tree). Ko, J.H., Chow, K.S., Han, K.H. Plant Mol. Biol. (2003) [Pubmed]
  12. Overexpression of a bacterial 1-deoxy-D-xylulose 5-phosphate synthase gene in potato tubers perturbs the isoprenoid metabolic network: implications for the control of the tuber life cycle. Morris, W.L., Ducreux, L.J., Hedden, P., Millam, S., Taylor, M.A. J. Exp. Bot. (2006) [Pubmed]
  13. Regulation of color break in citrus fruits. Changes in pigment profiling and gene expression induced by gibberellins and nitrate, two ripening retardants. Alós, E., Cercós, M., Rodrigo, M.J., Zacarías, L., Talón, M. J. Agric. Food Chem. (2006) [Pubmed]
  14. Cloning and expression of cDNAs encoding two enzymes of the MEP pathway in Catharanthus roseus. Veau, B., Courtois, M., Oudin, A., Chénieux, J.C., Rideau, M., Clastre, M. Biochim. Biophys. Acta (2000) [Pubmed]
  15. Enzyme-ligand complexes of pyridoxine 5'-phosphate synthase: implications for substrate binding and catalysis. Garrido-Franco, M., Laber, B., Huber, R., Clausen, T. J. Mol. Biol. (2002) [Pubmed]
  16. Inhibition of isoprene biosynthesis pathway enzymes by phosphonates, bisphosphonates, and diphosphates. Cheng, F., Oldfield, E. J. Med. Chem. (2004) [Pubmed]
  17. On-line analysis of the (13)CO(2) labeling of leaf isoprene suggests multiple subcellular origins of isoprene precursors. Karl, T., Fall, R., Rosenstiel, T.N., Prazeller, P., Larsen, B., Seufert, G., Lindinger, W. Planta (2002) [Pubmed]
  18. Mutation in the flexible loop of 1-deoxy-D-xylulose 5-phosphate reductoisomerase broadens substrate utilization. Fernandes, R.P., Phaosiri, C., Proteau, P.J. Arch. Biochem. Biophys. (2005) [Pubmed]
  19. Scale-up of Artemisia annua L. hairy root cultures produces complex patterns of terpenoid gene expression. Souret, F.F., Kim, Y., Wyslouzil, B.E., Wobbe, K.K., Weathers, P.J. Biotechnol. Bioeng. (2003) [Pubmed]
  20. 1-Deoxy-D-xylulose 5-phosphate reductoisomerase and plastid isoprenoid biosynthesis during tomato fruit ripening. Rodríguez-Concepción, M., Ahumada, I., Diez-Juez, E., Sauret-Güeto, S., Lois, L.M., Gallego, F., Carretero-Paulet, L., Campos, N., Boronat, A. Plant J. (2001) [Pubmed]
  21. Functional involvement of a deoxy-D-xylulose 5-phosphate reductoisomerase gene harboring locus of Synechococcus leopoliensis in isoprenoid biosynthesis. Miller, B., Heuser, T., Zimmer, W. FEBS Lett. (2000) [Pubmed]
  22. Evidence of a role for LytB in the nonmevalonate pathway of isoprenoid biosynthesis. Cunningham, F.X., Lafond, T.P., Gantt, E. J. Bacteriol. (2000) [Pubmed]
  23. Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production. Kim, S.W., Keasling, J.D. Biotechnol. Bioeng. (2001) [Pubmed]
  24. E. coli MEP synthase: steady-state kinetic analysis and substrate binding. Koppisch, A.T., Fox, D.T., Blagg, B.S., Poulter, C.D. Biochemistry (2002) [Pubmed]
  25. Isoprenoid biosynthesis in plants - 2C-methyl-d-erythritol-4-phosphate synthase (IspC protein) of Arabidopsis thaliana. Rohdich, F., Lauw, S., Kaiser, J., Feicht, R., Köhler, P., Bacher, A., Eisenreich, W. FEBS J. (2006) [Pubmed]
  26. Molecular cloning and characterization of a 1-deoxy-D-xylulose 5-phosphate reductoisomerase gene from Ginkgo biloba. Gong, Y., Liao, Z., Chen, M., Zuo, K., Guo, L., Tan, Q., Huang, Z., Kai, G., Sun, X., Tan, F., Tang, K. DNA Seq. (2005) [Pubmed]
WikiGenes - Universities