The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

di-4-Anepps     3-[4-[(E)-2-[6- (dibutylamino)naphthalen-2...

Synonyms: AR-1E6736, FT-0624580, AC1O5PH5, AC1Q22P2, 90134-00-2, ...
This record was replaced with 6438328.
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of 3-[4-[(E)-2-[6-(dibutylamino)naphthalen-2-yl]ethenyl]pyridin-1-yl]propane-1-sulfonic acid

  • Here changes in intramembrane potential of the bilayer membranes in two different preparations, lipid vesicles and individual N1E-115 neuroblastoma cells, are calculated from the fluorescence ratios of di-4-ANEPPS and di-8-ANEPPS as a function of divalent cation concentration [1].
  • To determine the spatial features of APD alternans during ischemia, blood-perfused rabbit hearts were stained with 4-[beta-[2(di-n-butylamino)-6-napthyl]vinyl]pyridinium (di-4-ANEPPS) and imaged with a high-resolution camera [2].
  • We analyzed the neuronal response to hypercapnic acidosis, using an optical recording technique with a fluorescent voltage-sensitive dye (di-4-ANEPPS), in pontine slice preparations of neonatal rats, containing the locus coeruleus (LC), which has been electrophysiologically demonstrated to be chemosensitive [3].
  • The ganglion was stained with the fluorescence voltage sensitive dye Di-4-Anepps [4].
  • Hearts from transgenic and control mice were isolated, perfused, stained with di-4-ANEPPS, and paced at multiple sites to optically map APs, activation, and repolarization sequences at baseline and during arrhythmias [5].
 

High impact information on 3-[4-[(E)-2-[6-(dibutylamino)naphthalen-2-yl]ethenyl]pyridin-1-yl]propane-1-sulfonic acid

  • Stimulation with a strength of 0.1 to 40 mA was applied from a point electrode on the left or right ventricle of isolated perfused rabbit hearts at 37 degrees C to 38 degrees C stained with the potentiometric dye di-4-ANEPPS [6].
  • Fluorescence changes in di-4-ANEPPS applied to rat mucosas were monitored by a 10 x 10 pixel photodiode array [7].
  • As a step toward characterizing these dynamics, we have imaged electrical activity in slices from rat primary visual cortex stained with the voltage-sensitive dye di-4-ANEPPS [8].
  • Intracellular calcium concentration and optical mapping image of the action potential were recorded using Fluo-3 and di-4-ANEPPS, respectively [9].
  • In addition, plasma membrane electrical potential (delta psi) has been measured for the same cells by the K+/valinomycin null point titration method using the ratiometric styryl probe di-4-ANEPPS [10].
 

Biological context of 3-[4-[(E)-2-[6-(dibutylamino)naphthalen-2-yl]ethenyl]pyridin-1-yl]propane-1-sulfonic acid

  • The dye di-4-ANEPPS [1-(3-sulfonatopropyl)-4-[beta-[2-(di-n-butylamino)-6-naphthyl] vin yl]pyridinium betaine] is well characterized from earlier investigations and responds via a rapid (less than millisecond) spectral shift to membrane potential changes [11].
  • We studied cardiac membrane polarization produced by subthreshold stimuli in 1) rabbit ventricular muscle using high-resolution fluorescent imaging with the voltage-sensitive dye pyridinium 4-[2-[6-(dibutylamino)-2-naphthalenyl]-ethenyl]-1-(3-sulfopropyl)hydroxide (di-4-ANEPPS) and 2) an active bidomain model with Luo-Rudy ion channel kinetics [12].
  • Fluorescent images obtained from omohyoid muscle preparations exposed to crotoxin and Di-4-ANEPPS revealed localized areas of increased fluorescence, muscle contractions, derangement of myofibrils, and differing sensitivity to crotoxin of different muscle cells [13].
 

Anatomical context of 3-[4-[(E)-2-[6-(dibutylamino)naphthalen-2-yl]ethenyl]pyridin-1-yl]propane-1-sulfonic acid

 

Associations of 3-[4-[(E)-2-[6-(dibutylamino)naphthalen-2-yl]ethenyl]pyridin-1-yl]propane-1-sulfonic acid with other chemical compounds

 

Gene context of 3-[4-[(E)-2-[6-(dibutylamino)naphthalen-2-yl]ethenyl]pyridin-1-yl]propane-1-sulfonic acid

  • METHODS: Fluorescent signals emitted from excited Di-4-ANEPPS in isolated Langendorff perfused mouse hearts were recorded from the left ventricular epicardium using an 8 by 8 photo diode array [21].
  • Using the dye, di-4-ANEPPS, we monitored the fluorescence changes at 100 contiguous sites with a 10 x 10 photodiode array on the olfactory mucosa of each rat's septum and medial surface of the turbinates in response to the same five odorants [22].
  • Since di-4-ANEPPS is a very important tool for optical membrane potential recordings in heart tissue and single cardiomyocytes catalase might be useful in suppressing photodynamic damage during optical potential recordings [23].
 

Analytical, diagnostic and therapeutic context of 3-[4-[(E)-2-[6-(dibutylamino)naphthalen-2-yl]ethenyl]pyridin-1-yl]propane-1-sulfonic acid

References

  1. The effect of asymmetric surface potentials on the intramembrane electric field measured with voltage-sensitive dyes. Xu, C., Loew, L.M. Biophys. J. (2003) [Pubmed]
  2. Spatial heterogeneity of action potential alternans during global ischemia in the rabbit heart. Qian, Y.W., Sung, R.J., Lin, S.F., Province, R., Clusin, W.T. Am. J. Physiol. Heart Circ. Physiol. (2003) [Pubmed]
  3. Optical mapping of pontine chemosensitive regions of neonatal rat. Ito, Y., Oyamada, Y., Okada, Y., Hakuno, H., Aoyama, R., Yamaguchi, K. Neurosci. Lett. (2004) [Pubmed]
  4. CCD imaging of the electrical activity in the leech nervous system. Canepari, M., Campani, M., Spadavecchia, L., Torre, V. Eur. Biophys. J. (1996) [Pubmed]
  5. Enhanced dispersion of repolarization and refractoriness in transgenic mouse hearts promotes reentrant ventricular tachycardia. Baker, L.C., London, B., Choi, B.R., Koren, G., Salama, G. Circ. Res. (2000) [Pubmed]
  6. Transmembrane voltage changes during unipolar stimulation of rabbit ventricle. Knisley, S.B. Circ. Res. (1995) [Pubmed]
  7. The interaction of imposed and inherent olfactory mucosal activity patterns and their composite representation in a mammalian species using voltage-sensitive dyes. Kent, P.F., Mozell, M.M., Murphy, S.J., Hornung, D.E. J. Neurosci. (1996) [Pubmed]
  8. Functional study of the rat cortical microcircuitry with voltage-sensitive dye imaging of neocortical slices. Yuste, R., Tank, D.W., Kleinfeld, D. Cereb. Cortex (1997) [Pubmed]
  9. Analysis of the electrophysiological properties and arrhythmias in directly contacted skeletal and cardiac muscle cell sheets. Itabashi, Y., Miyoshi, S., Yuasa, S., Fujita, J., Shimizu, T., Okano, T., Fukuda, K., Ogawa, S. Cardiovasc. Res. (2005) [Pubmed]
  10. Transfection of mu MDR 1 inhibits Na(+)-independent Cl-/-HCO3 exchange in Chinese hamster ovary cells. Luz, J.G., Wei, L.Y., Basu, S., Roepe, P.D. Biochemistry (1994) [Pubmed]
  11. Dual-wavelength ratiometric fluorescence measurements of membrane potential. Montana, V., Farkas, D.L., Loew, L.M. Biochemistry (1989) [Pubmed]
  12. Nonlinear effects in subthreshold virtual electrode polarization. Sambelashvili, A.T., Nikolski, V.P., Efimov, I.R. Am. J. Physiol. Heart Circ. Physiol. (2003) [Pubmed]
  13. Membrane depolarization is the initial action of crotoxin on isolated murine skeletal muscle. Melo, P.A., Burns, C.F., Blankemeyer, J.T., Ownby, C.L. Toxicon (2004) [Pubmed]
  14. Chronic inhibition of Na+/H+-exchanger attenuates cardiac hypertrophy and prevents cellular remodeling in heart failure. Baartscheer, A., Schumacher, C.A., van Borren, M.M., Belterman, C.N., Coronel, R., Opthof, T., Fiolet, J.W. Cardiovasc. Res. (2005) [Pubmed]
  15. Odorant-specific spatial patterns in mucosal activity predict perceptual differences among odorants. Kent, P.F., Youngentob, S.L., Sheehe, P.R. J. Neurophysiol. (1995) [Pubmed]
  16. Cardiomyocytes purified from differentiated embryonic stem cells exhibit characteristics of early chamber myocardium. Fijnvandraat, A.C., van Ginneken, A.C., Schumacher, C.A., Boheler, K.R., Lekanne Deprez, R.H., Christoffels, V.M., Moorman, A.F. J. Mol. Cell. Cardiol. (2003) [Pubmed]
  17. Mucosal inherent activity patterns in the rat: evidence from voltage-sensitive dyes. Youngentob, S.L., Kent, P.F., Sheehe, P.R., Schwob, J.E., Tzoumaka, E. J. Neurophysiol. (1995) [Pubmed]
  18. Synaptic blockade plays a major role in the neural disturbance of experimental spinal cord compression. Yoshida, H., Okada, Y., Maruiwa, H., Fukuda, K., Nakamura, M., Chiba, K., Toyama, Y. J. Neurotrauma (2003) [Pubmed]
  19. Decreased contraction to phenylephrine by ouabain in 2K-1C rat aorta is modulated by the endothelium. Molin, J.C., Sguilla, F.S., Bendhack, L.M. Eur. J. Pharmacol. (2005) [Pubmed]
  20. Low osmolarity transforms ventricular fibrillation from complex to highly organized, with a dominant high-frequency source. Choi, B.R., Hatton, W.J., Hume, J.R., Liu, T., Salama, G. Heart rhythm : the official journal of the Heart Rhythm Society. (2006) [Pubmed]
  21. Optical mapping of propagation changes induced by elevated extracellular potassium ion concentration in genetically altered mouse hearts. Punske, B.B., Rossi, S., Ershler, P., Rasmussen, I., Abel, E.D. Journal of electrocardiology. (2004) [Pubmed]
  22. Enhancement of odorant-induced mucosal activity patterns in rats trained on an odorant identification task. Youngentob, S.L., Kent, P.F. Brain Res. (1995) [Pubmed]
  23. Di-4-ANEPPS causes photodynamic damage to isolated cardiomyocytes. Schaffer, P., Ahammer, H., Müller, W., Koidl, B., Windisch, H. Pflugers Arch. (1994) [Pubmed]
  24. Correction of motion artifact in transmembrane voltage-sensitive fluorescent dye emission in hearts. Tai, D.C., Caldwell, B.J., LeGrice, I.J., Hooks, D.A., Pullan, A.J., Smaill, B.H. Am. J. Physiol. Heart Circ. Physiol. (2004) [Pubmed]
  25. Unique properties of cardiac action potentials recorded with voltage-sensitive dyes. Girouard, S.D., Laurita, K.R., Rosenbaum, D.S. J. Cardiovasc. Electrophysiol. (1996) [Pubmed]
 
WikiGenes - Universities