The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

CAT  -  catalase

Sus scrofa

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of CAT


Psychiatry related information on CAT


High impact information on CAT


Chemical compound and disease context of CAT


Biological context of CAT


Anatomical context of CAT


Associations of CAT with chemical compounds


Regulatory relationships of CAT


Other interactions of CAT

  • After thawing, proliferative activity, viability, steroidogenesis and apoptosis were tested; moreover, we determined heat shock protein (HSP70) production, to investigate the recovery from stress and superoxide dismutase (SOD) and catalase activity to evaluate a possible impairment of the antioxidant pathway [33].
  • Activities of catalase, acyl-CoA oxidase and the cyanide-insensitive acyl-CoA beta-oxidation system in this tissue were comparable with those in rat liver [34].
  • There were no effects of exercise training on the levels of SOD-2 (mitochondrial), catalase, or p67(phox) proteins [35].
  • Vitamin E alone had no effect on beta-oxidation or catalase activity, whereas linoleic acid exposure significantly increased both compared with control values [36].
  • Cholesterol-rich liposome treatment impaired the expected increase in catalase activities in response to PGE2 [21].

Analytical, diagnostic and therapeutic context of CAT


  1. Interaction of primate alveolar macrophages and Legionella pneumophila. Jacobs, R.F., Locksley, R.M., Wilson, C.B., Haas, J.E., Klebanoff, S.J. J. Clin. Invest. (1984) [Pubmed]
  2. Polyethylene glycol superoxide dismutase and catalase attenuate increased blood-brain barrier permeability after ischemia in piglets. Armstead, W.M., Mirro, R., Thelin, O.P., Shibata, M., Zuckerman, S.L., Shanklin, D.R., Busija, D.W., Leffler, C.W. Stroke (1992) [Pubmed]
  3. Toxic oxygen products alter calcium homeostasis in an asthma model. Weiss, E.B. J. Allergy Clin. Immunol. (1985) [Pubmed]
  4. Reduced blood-brain barrier permeability after cardiac arrest by conjugated superoxide dismutase and catalase in piglets. Schleien, C.L., Eberle, B., Shaffner, D.H., Koehler, R.C., Traystman, R.J. Stroke (1994) [Pubmed]
  5. Reversals of blood-brain barrier disruption by catalase: a serial magnetic resonance imaging study of experimental optic neuritis. Guy, J., McGorray, S., Fitzsimmons, J., Beck, B., Mancuso, A., Rao, N.A., Hamed, L. Invest. Ophthalmol. Vis. Sci. (1994) [Pubmed]
  6. Food deprivation changes peroxisomal beta-oxidation activity but not catalase activity during postnatal development in pig tissues. Yu, X.X., Drackley, J.K., Odle, J. J. Nutr. (1998) [Pubmed]
  7. Antioxidant defense mechanisms of endothelial cells: glutathione redox cycle versus catalase. Suttorp, N., Toepfer, W., Roka, L. Am. J. Physiol. (1986) [Pubmed]
  8. Differential effects of hydrogen peroxide on indices of endothelial cell function. Ager, A., Gordon, J.L. J. Exp. Med. (1984) [Pubmed]
  9. Protease-cleaved iron-transferrin augments oxidant-mediated endothelial cell injury via hydroxyl radical formation. Miller, R.A., Britigan, B.E. J. Clin. Invest. (1995) [Pubmed]
  10. Interaction of the Pseudomonas aeruginosa secretory products pyocyanin and pyochelin generates hydroxyl radical and causes synergistic damage to endothelial cells. Implications for Pseudomonas-associated tissue injury. Britigan, B.E., Roeder, T.L., Rasmussen, G.T., Shasby, D.M., McCormick, M.L., Cox, C.D. J. Clin. Invest. (1992) [Pubmed]
  11. Pathogenesis of foreign body infection. Evidence for a local granulocyte defect. Zimmerli, W., Lew, P.D., Waldvogel, F.A. J. Clin. Invest. (1984) [Pubmed]
  12. The alteration of superoxide dismutase, catalase, glutathione peroxidase, and NAD(P)H cytochrome c reductase in guinea pig polymorphonuclear leukocytes and alveolar macrophages during hyperoxia. Rister, M., Baehner, R.L. J. Clin. Invest. (1976) [Pubmed]
  13. Role of oxygen-derived free radicals in protease activation after pancreas transplantation in the pig. Petersson, U., Källén, R., Montgomery, A., Borgström, A. Transplantation (1998) [Pubmed]
  14. Tetrahydrobiopterin and antioxidants reverse the coronary endothelial dysfunction associated with left ventricular hypertrophy in a porcine model. Malo, O., Desjardins, F., Tanguay, J.F., Tardif, J.C., Carrier, M., Perrault, L.P. Cardiovasc. Res. (2003) [Pubmed]
  15. Superoxide scavengers do not prevent ischemia-induced alteration of cerebral vasodilation in piglets. Leffler, C.W., Thompson, C.C., Armstead, W.M., Mirro, R., Shibata, M., Busija, D.W. Pediatr. Res. (1993) [Pubmed]
  16. Antioxidant enzymes reduce loss of blood-brain barrier integrity in experimental optic neuritis. Guy, J., Ellis, E.A., Hope, G.M., Rao, N.A. Arch. Ophthalmol. (1989) [Pubmed]
  17. Swine catalase deduced from cDNA and localization of the catalase gene on swine chromosome 2p16-p15. Lin, Z.H., Wang, Y.F., Sarai, A., Yasue, H. Biochem. Genet. (1997) [Pubmed]
  18. Developmental expression of antioxidant enzymes in guinea pig lung and liver. Rickett, G.M., Kelly, F.J. Development (1990) [Pubmed]
  19. Glutathione dependent reduction of alloxan to dialuric acid catalyzed by thioltransferase (glutaredoxin): a possible role for thioltransferase in alloxan toxicity. Washburn, M.P., Wells, W.W. Free Radic. Biol. Med. (1997) [Pubmed]
  20. Differential protective effects of O-phenanthroline and catalase on H2O2-induced DNA damage and inhibition of protein synthesis in endothelial cells. Jornot, L., Petersen, H., Junod, A.F. J. Cell. Physiol. (1991) [Pubmed]
  21. Role of PGE2 on gallbladder muscle cytoprotection of guinea pigs. Xiao, Z.L., Biancani, P., Behar, J. Am. J. Physiol. Gastrointest. Liver Physiol. (2004) [Pubmed]
  22. Homocysteine, a thrombogenic agent, suppresses anticoagulant heparan sulfate expression in cultured porcine aortic endothelial cells. Nishinaga, M., Ozawa, T., Shimada, K. J. Clin. Invest. (1993) [Pubmed]
  23. Macrophage-mediated cytotoxicity: role of a soluble macrophage cytotoxic factor similar to lymphotoxin and tumor necrosis factor. Zacharchuk, C.M., Drysdale, B.E., Mayer, M.M., Shin, H.S. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
  24. Peroxisomal localization of acyl-coenzyme A reductase (long chain alcohol forming) in guinea pig intestine mucosal cells. Burdett, K., Larkins, L.K., Das, A.K., Hajra, A.K. J. Biol. Chem. (1991) [Pubmed]
  25. Signals involved in T cell activation. I. Phorbol esters enhance responsiveness but cannot replace intact accessory cells in the induction of mitogen-stimulated T cell proliferation. Davis, L., Lipsky, P.E. J. Immunol. (1985) [Pubmed]
  26. Evidence for an essential role of reactive oxygen species in the genesis of late preconditioning against myocardial stunning in conscious pigs. Sun, J.Z., Tang, X.L., Park, S.W., Qiu, Y., Turrens, J.F., Bolli, R. J. Clin. Invest. (1996) [Pubmed]
  27. Reoxygenation-induced relaxation of coronary arteries. A novel endothelium-dependent mechanism. Close, L.A., Bowman, P.S., Paul, R.J. Circ. Res. (1994) [Pubmed]
  28. Mechanism of CO2 response in cerebral arteries of the newborn pig: role of phospholipase, cyclooxygenase, and lipoxygenase pathways. Wagerle, L.C., Mishra, O.P. Circ. Res. (1988) [Pubmed]
  29. Hydrophilic but not hydrophobic bile acids prevent gallbladder muscle dysfunction in acute cholecystitis. Xiao, Z.L., Biancani, P., Carey, M.C., Behar, J. Hepatology (2003) [Pubmed]
  30. Gastrin-amidating enzyme in the porcine pituitary and antrum. Characterization of molecular forms and substrate specificity. Dickinson, C.J., Yamada, T. J. Biol. Chem. (1991) [Pubmed]
  31. Endothelium-derived relaxing factor and atriopeptin II elevate cyclic GMP levels in pig aortic endothelial cells. Martin, W., White, D.G., Henderson, A.H. Br. J. Pharmacol. (1988) [Pubmed]
  32. Effects of bile acids on the muscle functions of guinea pig gallbladder. Xiao, Z.L., Rho, A.K., Biancani, P., Behar, J. Am. J. Physiol. Gastrointest. Liver Physiol. (2002) [Pubmed]
  33. Cryopreservation of pig granulosa cells: effect of FSH addition to freezing medium. Tirelli, M., Basini, G., Grasselli, F., Bianco, F., Tamanini, C. Domest. Anim. Endocrinol. (2005) [Pubmed]
  34. Participation of peroxisomes in lipid biosynthesis in the harderian gland of guinea pig. Horie, S., Suga, T. Biochem. J. (1989) [Pubmed]
  35. SOD-1 expression in pig coronary arterioles is increased by exercise training. Rush, J.W., Laughlin, M.H., Woodman, C.R., Price, E.M. Am. J. Physiol. Heart Circ. Physiol. (2000) [Pubmed]
  36. Effect of vitamin E on linoleic acid-mediated induction of peroxisomal enzymes in cultured porcine endothelial cells. Hennig, B., Boissonneault, G.A., Chow, C.K., Wang, Y., Matulionis, D.H., Glauert, H.P. J. Nutr. (1990) [Pubmed]
  37. A thrombocyte-induced myocardial dysfunction in the ischemic and reperfused guinea pig heart is mediated by reactive oxygen species. Seligmann, C., Schimmer, M., Leitsch, T., Bock, A., Simsek, Y., Tschöpe, C., Schultheiss, H.P. Free Radic. Biol. Med. (2000) [Pubmed]
  38. Hypoxic constriction and reactive oxygen species in porcine distal pulmonary arteries. Liu, J.Q., Sham, J.S., Shimoda, L.A., Kuppusamy, P., Sylvester, J.T. Am. J. Physiol. Lung Cell Mol. Physiol. (2003) [Pubmed]
  39. Altered excitability of intestinal neurons in primary culture caused by acute oxidative stress. Vogalis, F., Harvey, J.R. J. Neurophysiol. (2003) [Pubmed]
  40. Studies of hypoxemic/reoxygenation injury: without aortic clamping. VI. Counteraction of oxidant damage by exogenous antioxidants: N-(2-mercaptopropionyl)-glycine and catalase. Ihnken, K., Morita, K., Buckberg, G.D., Sherman, M.P., Young, H.H. J. Thorac. Cardiovasc. Surg. (1995) [Pubmed]
WikiGenes - Universities