The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Cilazaprilat     (5S,8S)-5-[[(1S)-1-carboxy-3- phenyl...

Synonyms: Cilazaprilate, Cilazaprilatum, SureCN906169, AG-H-69240, CHEMBL2104578, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Cilazaprilat

 

High impact information on Cilazaprilat

 

Biological context of Cilazaprilat

 

Anatomical context of Cilazaprilat

 

Associations of Cilazaprilat with other chemical compounds

 

Gene context of Cilazaprilat

 

Analytical, diagnostic and therapeutic context of Cilazaprilat

  • When cilazaprilat (3 micrograms/kg per minute) was infused into the bypass tube for 10 minutes after reduction of coronary blood flow due to partial occlusion of the bypass tube, coronary blood flow increased from 30 +/- 1 to 43 +/- 2 mL/100 g per minute despite there being no changes in coronary perfusion pressure (43 +/- 1 mm Hg) [20].
  • After oral administration of a single dose of 2.5 mg cilazapril, the active diacid cilazaprilat appeared rapidly in the plasma (Tmax 2.0 +/- 0.2 h) [21].
  • Quantitative determination of the angiotensin-converting enzyme inhibitor cilazapril and its active metabolite cilazaprilat in pharmaceuticals and urine by high-performance liquid chromatography with amperometric detection [22].

References

  1. Cardioprotective effect of angiotensin-converting enzyme inhibition against hypoxia/reoxygenation injury in cultured rat cardiac myocytes. Matoba, S., Tatsumi, T., Keira, N., Kawahara, A., Akashi, K., Kobara, M., Asayama, J., Nakagawa, M. Circulation (1999) [Pubmed]
  2. Role of Ca2+-activated K+ channels in the protective effect of ACE inhibition against ischemic myocardial injury. Node, K., Kitakaze, M., Kosaka, H., Minamino, T., Mori, H., Hori, M. Hypertension (1998) [Pubmed]
  3. Effects of cilazaprilat and enalaprilat on experimental dermatitis in guinea pigs. Rosenqvist, U., Persson, K., Lindgren, B.R., Andersson, R.G. Pharmacol. Toxicol. (1991) [Pubmed]
  4. Local angiotensin II generation in the rat heart: role of renin uptake. Müller, D.N., Fischli, W., Clozel, J.P., Hilgers, K.F., Bohlender, J., Ménard, J., Busjahn, A., Ganten, D., Luft, F.C. Circ. Res. (1998) [Pubmed]
  5. Potentiation of endothelium-dependent relaxations to bradykinin by angiotensin I converting enzyme inhibitors in canine coronary artery involves both endothelium-derived relaxing and hyperpolarizing factors. Mombouli, J.V., Illiano, S., Nagao, T., Scott-Burden, T., Vanhoutte, P.M. Circ. Res. (1992) [Pubmed]
  6. Endothelium-modulated proliferation of medial smooth muscle cells: influence of angiotensin II and converting enzyme inhibition. Hahn, A.W., Schmidt, R., Kern, F., Resink, T.J., Bühler, F.R. Eur. Heart J. (1995) [Pubmed]
  7. Effects of the converting enzyme inhibitor cilazaprilat on endothelium-dependent responses. Mombouli, J.V., Nephtali, M., Vanhoutte, P.M. Hypertension (1991) [Pubmed]
  8. In vivo visualization of subendocardial arteriolar response in renovascular hypertensive hearts. Yada, T., Goto, M., Hiramatsu, O., Tachibana, H., Toyota, E., Nakamoto, H., Ogasawara, Y., Matsuda, H., Arakawa, K., Hayashi, K., Suzuki, H., Kajiya, F. Am. J. Physiol. Heart Circ. Physiol. (2003) [Pubmed]
  9. Effects of ACE-inhibition on redox status and expression of P-selectin of endothelial cells subjected to oxidative stress. Zahler, S., Kupatt, C., Möbert, J., Becker, B.F., Gerlach, E. J. Mol. Cell. Cardiol. (1997) [Pubmed]
  10. A pharmacokinetic study of cilazapril in elderly and young volunteers. Williams, P.E., Brown, A.N., Rajaguru, S., Walters, G.E., McEwen, J., Durnin, C. British journal of clinical pharmacology. (1989) [Pubmed]
  11. The effect of acute ACE inhibition on atrial natriuretic peptide. Doorenbos, C.J., van Brummelen, P. British journal of clinical pharmacology. (1989) [Pubmed]
  12. Variation in angiotensin-converting enzyme (ACE) inhibitor affinity at two binding sites on rat pulmonary ACE: influence on bradykinin hydrolysis. Perich, R.B., Jackson, B., Johnston, C.I. Clin. Exp. Pharmacol. Physiol. (1992) [Pubmed]
  13. Cellular mechanisms of cardioprotection afforded by inhibitors of angiotensin converting enzyme in ischemic hearts: role of bradykinin and nitric oxide. Kitakaze, M., Node, K., Takashima, S., Minamino, T., Kuzuya, T., Hori, M. Hypertens. Res. (2000) [Pubmed]
  14. In vitro effect of cilazaprilat on sodium-potassium transport systems in human erythrocytes. Lijnen, P. Methods and findings in experimental and clinical pharmacology. (1990) [Pubmed]
  15. Enalaprilat, but not cilazaprilat, increases inflammatory skin reactions in guinea-pigs. Andersson, R.G., Karlberg, B.E., Lindgren, B.R., Persson, K., Rosenqvist, U. Drugs (1991) [Pubmed]
  16. Cilazapril. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in cardiovascular disease. Deget, F., Brogden, R.N. Drugs (1991) [Pubmed]
  17. The pharmacokinetics and bioavailability of cilazapril in normal man. Williams, P.E., Brown, A.N., Rajaguru, S., Francis, R.J., Walters, G.E., McEwen, J., Durnin, C. British journal of clinical pharmacology. (1989) [Pubmed]
  18. Cilazapril and enalapril inhibit local angiotensin I conversion in human veins but lack direct venodilating properties. Eichler, H.G., Blöchl-Daum, B., Kyrle, P.A., Gasic, S. J. Cardiovasc. Pharmacol. (1989) [Pubmed]
  19. A review of the preclinical cardiovascular pharmacology of cilazapril, a new angiotensin converting enzyme inhibitor. Waterfall, J.F. British journal of clinical pharmacology. (1989) [Pubmed]
  20. Beneficial effects of inhibition of angiotensin-converting enzyme on ischemic myocardium during coronary hypoperfusion in dogs. Kitakaze, M., Minamino, T., Node, K., Komamura, K., Shinozaki, Y., Mori, H., Kosaka, H., Inoue, M., Hori, M., Kamada, T. Circulation (1995) [Pubmed]
  21. Steady-state pharmacokinetics and pharmacodynamics of cilazapril in the presence and absence of cyclopenthiazide. Krum, H., Jackson, B., Conway, E.L., Howes, L.G., Johnston, C.I., Louis, W.J. J. Cardiovasc. Pharmacol. (1992) [Pubmed]
  22. Quantitative determination of the angiotensin-converting enzyme inhibitor cilazapril and its active metabolite cilazaprilat in pharmaceuticals and urine by high-performance liquid chromatography with amperometric detection. Prieto, J.A., Jiménez, R.M., Alonso, R.M. J. Chromatogr. B Biomed. Sci. Appl. (1998) [Pubmed]
 
WikiGenes - Universities